Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Prof. Jansen meets the community
2012-05-16

 

Prof. Jansen listens attentively to Mr Teboho Moloi, who represented the Harrismith Business Forum at the community meeting where the UFS vision was shared.
Photo: Thabo Kessah

16 May 2012

We are very proud of our academic achievements, but without the human element, these achievements are not worth anything. This is according to Prof. Jonathan Jansen, Vice-Chancellor and Rector, who attended a meeting with the Thabo Mofutsanyana community in the Eastern Free State.

Prof. Jansen made the community aware that the university has two very important and interlinked projects – the academic and human projects.

“Our university has ambitions to produce the best scholars in various fields, but this cannot be done if we neglect the human aspect of doing things in the right way. We want to produce academic giants as much as we want to produce graduates of life,” said Prof. Jansen to an audience that included representatives from the traditional councils, business, religious and farming communities as well as the Maluti-A-Phofung and Dihlabeng Local Municipalities.

Prof. Jansen said that the memorandum of understanding that the university signed with the Dihlabeng Local Municipality in 2010 was already yielding positive results.

“There has been an enormous improvement in the matric results of the Dihlabeng schools that are part of our efforts to contribute towards building a brighter future for our children. We want to thank the municipality and the Honourable Mayor Tjhetane Mofokeng for being part of this partnership,” added Prof. Jansen.
 
“We are grateful that the university is considerate of its stakeholders in developing this Maluti-A-Phofung area. I am also aware that this institution has contributed towards the building of a crèche in the Mabolela village in Qwaqwa and for this we are very happy,” said Ms Linah Mnisi from Motlotlwane Projects and Consultants.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept