Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Spotlight on Excellence in Teaching and Learning
2012-11-08

 

Dr Lynette van der Merwe and Mr Fred Mudanvanhu
Photo: Stephen Collett
08 November 2012

Dr Lynette van der Merwe from the Department of Basic Medical Sciences was announced as the winner of the Vice-Chancellor’s award for Teaching and Learning 2012. This award celebrates the excellent work done by academics in their classrooms. Mr Fred Mudanvanhu from the Computer Science and Informatics Department was named winner of the Excellence in Teaching and Learning award on the Qwaqwa Campus. They received their awards during the first Excellence in Teaching and Learning Week held on the Bloemfontein Campus from 29 October to 1 November 2012.

Hosted by the Centre for Teaching and Learning, the week was a showcase of scholarly teaching in various disciplines and innovation in teaching and learning practice. Some of the top academics at the university exhibited and presented their scholarly contributions in the form of presentations, short videos and electronic posters. This celebration of excellent work done by academics started on 24 October 2012, with the Excellence in Teaching and Learning Day on the Qwaqwa Campus.

Dr Francois Strydom, Director for the Centre for Teaching and Learning, said presentations made during Excellence in Teaching and Learning Week, especially those by the candidates for the Vice-Chancellor’s award for Teaching and Learning, demonstrated cutting edge, reflective scholarship.

He said Dr Van der Merwe’s innovative practises in teaching and learning stem from her Ph.D. research on Generation-Y learners and what their specific preferences are within the context of the Faculty of Health Sciences. “She illustrated how important it is for lecturers to reflect on the characteristics of the students that they are teaching to find the optimal balance between face-to-face interaction and the use of technology to engage the current generation.”

Mr Mudanvanhu was singled out for his research that contrasted the impact of different types of combinations of peer facilitated learning with the technology to improve students’ success.

Speaking at the teaching and learning awards function,Prof.Driekie Hay, Vice Rector:Academics, said the celebration of excellence indicates the pursuit towards developing the next generation of teachers, doctors, architects, scientists and researchers, to name a few. “The graduate that we educate today is the next president, the next Nobel prize winner or your grandchildren’s teacher.”
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept