Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Stress and fear on wild animals examined
2013-06-04

 

Dr Kate Nowak in the Soutpansberg Mountain
Photo: Supplied
04 June 2013

Have you ever wondered how our wild cousins deal with stress? Dr Kate Nowak, visiting postdoctoral researcher at the Zoology and Entomology Department at the UFS Qwaqwa Campus, has been assigned the task to find out. She is currently conducting research on the effects that stress and fear has on primate cognition.

The Primate and Predator project has been established over the last two years, following Dr Aliza le Roux’s (also at the Zoology and Entomology Department at Qwaqwa) interest in the effects of fear on primate cognition. Dr le Roux collaborates with Dr Russel Hill of Durham University (UK) at the Lajuma Research Centre in Limpopo and Dr Nowak has subsequently been brought in to conduct the study.

Research on humans and captive animals has indicated that stress can powerfully decrease individuals’ cognitive performance. Very little is known about the influence of stress and fear on the cognition of wild animals, though. Dr Nowak will examine the cognition of wild primates during actual risk posed by predators. This is known as the “landscape of fear” in her research.

“I feel very privileged to be living at Lajuma and on top of a mountain in the Soutpansberg Mountain Range. We are surrounded by nature – many different kinds of habitats including a tall mist-belt forest and a variety of wildlife which we see regularly, including samangos, chacma baboons and vervet monkeys, red duiker, rock hyrax, banded mongooses, crowned eagles, crested guinea fowl and cape batis. And of course those we don't see but find signs of, such as leopard, genet, civet and porcupine. Studying the behaviour of wild animals is a very special, and very humbling, experience, reminding us of the diversity of life of which humans are only a very small part,” said Dr Nowak.

At present, the research team is running Giving up Densities (GUD) experiments. This represents the process during which an animal forsakes a patch dense with food to forage at a different spot. The animal faces a trade-off between meeting energy demands and safety – making itself vulnerable to predators such as leopards and eagles. Dr le Roux said that, “researchers from the US and Europe are embracing cognitive ecology, revealing absolutely stunning facts about what animals can and can’t do. Hence, I don’t see why South Africans cannot do the same.”

Dr Nowak received the Claude Leon Fellowship for her project. Her research as a trustee of the foundation will increase the volume and quality of research output at the UFS and enhance the overall culture of research. Her analysis on the effect that stress and fear have on wild primates’ cognition will considerably inform the emerging field of cognitive ecology.

The field of cognitive ecology is relatively new. The term was coined in the 1990s by Les Real to bring together the fields of cognitive science and behavioural ecology.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept