Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Extraordinary professor appointed
2005-11-10

UFS appoints its first extraordinary professor for health systems research and development  

 

 

Prof Dingie van Rensburg (Director: Centre for Health Systems Research and Development at the UFS) and Prof  Helen Schneider (senior researcher at the University of the Witwatersrand's Centre for Health Policy and extraordinary professor at the UFS Centre for Health Systems Research and Development). Photo: L Loader

 

The Centre for Health Systems Research and Development (CHSR&D) at the University of the Free State (UFS) has appointed its first extraordinary professor. 

Prof Helen Schneider, former director of the Centre for Health Policy at the University of the Witwatersrand (WITS) and currently senior researcher in that Centre and consultant in the WITS School of Public Health, was appointed by CHSR&D for a period of two years.

“Prof Schneider is widely known for her thorough experience, expertise and exposure in the field of public health, health policy and management and health policy and systems research.  We are honoured to have her join us as an extraordinary professor,”  said Prof Dingie van Rensburg, Director of CHSR&D.

Prof Schneider will be involved in various components of the CHSR&D’s long-term project on public sector anti-retroviral treatment (ART) and will also assist in the documenting, monitoring, evaluating and facilitation of the implementation of the national treatment plan in the Free State.  She is also assisting the Gauteng Department of Health in a similar way.

“The two provinces are actually so different.  They provide a different window on the realities of HIV/AIDS and the intellectual traditions involved in it,” said Prof Schneider.  “I hope to contribute meaningfully to finding new dimensions for research necessary in order to optimise the contribution and effect of the research on ART,” said Prof Schneider.

Another need for Prof Schneider’s appointment is to strengthen the senior research capacity of the CHSR&D, guide them with the ART project and assist in the implementation of research results into policy, management and practice.

Media release
Issued by:Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
9 November 2005

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept