Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Official opening: UFS earmarks R10-million to support national priorities
2006-02-06

 

The University of the Free State (UFS) is to align key areas of its academic and research efforts with national priorities through the introduction of five strategic clusters which would be funded by seedmoney of R10-million in 2006.

Speaking at the Official Opening of the UFS on Friday (3 February 2006), the Rector and Vice-Chancellor, Prof Frederick Fourie, said the academic and research work that will be done in the five strategic clusters would contribute to the development of Mangaung, the Free State, South Africa and Africa.

 “It makes sense to concentrate the university’s human resources, our infrastructure, financial resources and intellectual expertise to ensure that the UFS makes a contribution to the country and the African continent,” Prof Fourie said.

“Strategic clusters will be organised on the basis that these areas of knowledge could become in the short term the flagships of the UFS, meaning those areas where the university currently has or in the very near future is likely to have some competitive advantage,” Prof Fourie said.

According to Prof Fourie, this strategic-cluster approach will be in line with the approach being designed by the National Research Foundation (NRF) to take national priorities into account and would enhance the quality of scholarship at the UFS.

The five strategic areas in which research and academic investment at the UFS will be clustered are the following:

Enabling technologies / Technology for the future;
Food production, quality and food security for Africa;
Development;
Social transformation;
Water resource and ecosystem management;

“Such strategic clusters are understood not only as research areas but as areas that also encompass strong undergraduate and particularly postgraduate teaching and a potentially solid scientific basis for service learning and community service research,” Prof Fourie said.

Within each of these clusters specific niche areas will be identified. Clusters could focus on one or more aspects of a particular discipline or could involve more than one discipline in researching a particular issue.

He said not all academic work and research being done at the UFS would be clustered in this way. Sufficient resources and support have been put in place for general research excellence in the past five years.

“Some of the spin-offs can have an important impact on industrial development, for example in the chemicals industry and may also create a basis for cooperation with provincial, national and international partners,” he said. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
5 February 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept