Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

President of Spelman College delivered Second Annual Reconciliation Lecture
2013-08-12

 

Dr Beverly Daniel Tatum
12 August 2013

Dr Beverly Tatum lecture (pdf)
Photo Gallery

The United States have much to learn from South Africa about reconciliation. This is according to Dr Beverly Daniel Tatum, president of Spelman College, the oldest college for African American women in the US. Delivering the Second Annual Reconciliation Lecture on our Bloemfontein Campus, Dr Tatum –an internationally-acclaimed educator and expert on race relations –said five years after the US elected its first black president, the country still finds it difficult to make peace with the painful truth of its past.

Drawing inspiration from a speech made by former president Nelson Mandela at the adoption of the South African constitution in 1996, Dr Tatum said it requires courage to engage in a meaningful way with those we have been socialised to mistrust.

Dr Tatum highlighted the shooting of the US teenager Trayvon Martin, who was killed in Florida in an incident many attributed to racial profiling. The unarmed Martin, while out walking in the evening to buy a snack, was accosted and shot by neighbourhood watchman George Zimmerman who suspected him to be a potential thief. 

“How do we move beyond stereotypes to more authentic knowledge of one another?” she posed the question to a packed Reitz Hall in the Centenary Complex. 

Dr Tatum, author of the critically-acclaimed books, Can We Talk about Race? and Why Are All the Black Kids Sitting Together in the Cafeteria? said we have to be brave enough to have our assumptions challenged. 

“If we want a better society, one characterised by strength, trust and unity, we must interrupt the cycle and there is no better place to do it than at a university like this one, where the next generation of leaders is being prepared. But it requires intentionality. It takes practice.”

During her two-day visit, she also met with postgraduate students from the Faculty of Education to discuss social cohesion at schools. She also took part in a roundtable discussion with educators from the UFS and other universities, deliberating the topicLeading with/for/against differences on university campuses.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept