Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

UFS first to mechanise agricultural technique
2006-05-09

    

Small farmers from Thaba `Nchu were the biggest group attending the farmers day at the UFS Paradys experimental farm.  From the left are Mr David Motlhale (a small farmer from Thaba 'Nchu), Prof Leon van Rensburg (lecturer at the UFS Department of Soil, Crop and Climate Sciences and project leader), Mr Nhlonipho Nhlabatsi (Agricultural Research Council, Glen), Ms Meisie Mthethwa (small farmer from Bloemspruit).  In front is Mr Patrick Molatodi (chairperson of the Tswelopele Small Farmer Association).
 

 

Some of the participants of the farmers day at the UFS Paradys experimental farm were from the left Prof Leon van Rensburg (lecturer at the UFS Department of Soil, Crop and Climate Sciences and project leader, Mr Patrick Molatodi (chairperson of the Tswelopele Small Farmers Association) and Prof Herman van Schalkwyk (Dean: UFS Faculty of Natural and Agricultural Sciences).

UFS first tertiary institution in world to mechanise agricultural technique
The University of the Free State (UFS) is the first tertiary institution in the world to mechanise the in-field rain water harvesting technique on a commercial scale.

The technique was recently demonstrated to about 100 small farmers at the UFS Paradys experimental farm outside Bloemfontein. 

“With this technique rain water is channeled to the plant and in this way food security is increased.  The advantage of the technique for commercial farmers lies in the reduced cultivation of land.  Small farmers will benefit from this because they can now move out into the fields and away from farming in their back yards,” says Prof Leon van Rensburg, lecturer at the UFS Department of Soil, Crop and Climate Sciences and project leader.    

Rain water harvesting is an antique concept that was used by communities before the birth of Christ.  In South Africa the technique is mainly used in the plots of small farmers where they make surface structures by hand. 

"The technique is also used for the first time by the UFS on commercial scale by means of the cultivation of a summer crop on 100 ha at the Paradys experimental farm,” says Prof Leon van Rensburg,

Of the farmers who attended the farmers day most represented about 42 rural communities in the vicinity of Thaba ‘Nchu.  A group of seven from KwaZulu-Natal also attended the proceedings.  These small farmers can for example apply this technique successfully on the 250-300 ha communal land that is available in the Thaba ‘Nchu area. 

The project is funded by the UFS and the National Research Foundation (NRF) and the farmers’ day was funded by the Water Research Commission.   

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
9 May 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept