Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Distinguished Kovsie medical student bestowed with Abe Bailey Bursary
2013-10-14

14 October 2013

Residence head, SRC member, Golden Key International Honour Society member and now: Abe Bailey scholar as well. These are some of the achievements and leadership titles that Michael van Niekerk, a fourth-year MBChB student at our university, has under his belt.

One of 18 South Africans countrywide, Van Niekerk is to visit institutions in England and Scotland as a recipient of the prestigious Abe Bailey Travel Bursary for 2013. The scholarship acknowledges excellence in academics, leadership and community service and is awarded annually to third-year students and/or junior lecturers not older than 25 years of age.

The recipients of the 2013 Abe Bailey scholarship leave for Cape Town on 20 November 2013 to attend a two-day orientation process. Following this, they will then travel to London and Edinburgh, where they will visit universities, as well as places of interest such as London’s House of Lords.

Van Niekerk, who recently visited the USA as part of the Golden Key International Honour Society’s International Scholar Laureate programme, says it is an incredible honour to be this year’s Abe Bailey recipient for the UFS. "I am very blessed to not only excel in the medical field, but also in leadership and other aspects and I believe that this is absolutely grace from Above. I believe that this is an opportunity and a step to a better future. I don’t believe in being average and believe that this is an opportunity to prove myself and achieve more."

This Kovsie student says he has great plans for the future. "If it is God’s will, I would very much like to specialise in neurosurgery, cardiothoracic surgery or trauma surgery. I would like to be part of the Rhodes Scholarship and would strive to reach it."

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept