Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Before and After Hector
2014-03-05

 

Björn Krondorfer

The apartheid years. The Anglo-Boer War. Mix these two topics together and you are ensured of a vigorous debate.

This was exactly the result at the Centenary Complex Gallery recently. During a round-table discussion, Kovsie students analysed an artwork by Gerrit Hattingh entitled “Before and After Hector”. The artwork depicts the iconic photo of Hector Pieterson – taken during the 1976 Soweto Uprising – staged as an event in the Anglo-Boer War.

The artwork functioned as the focal point at an exhibition curated by Angela de Jesus.The exhibition formed part of the International Research Forum hosted by the UFS which explored the topic of Societies in the Aftermath of Mass Trauma and Violence.

The ensuing conversation did not disappoint. The photograph evoked a wide range of views and emotions as the students reflected on the historic image representing violent and painful events of our collective past. As the students robustly exchanged their opinions, they developed strategies to support the reconciliation process. The dialogue assisted these students in formulating ways to look back at our history and use this knowledge to carry our society past traumatic experiences.

Prof Pumla Gobodo-Madikizela, Senior Research Professor in the Office for Research on Trauma, Forgiveness and Reconciliation, was astounded at the level of insight and wisdom the students displayed. “I am pleased that our students came to join us around the table to discuss this portrait which is iconic globally; to engage and also give their own interpretations of what they know, and what they do not know about our historical past. The dialogue about the interweaving of the Hector Pieterson photograph with the story of black victims of the British concentration camps is one of the ways of exploring the views of the younger generation in the aftermath of mass trauma and violence in our collective history,” Prof Gobodo-Madikizela concluded at the end of the conversation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept