Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Renewal process in JBM Hertzog Residence
2014-03-19

In February 2014, the JBM Hertzog residence community initiated a process of renewal. The review and reassessment of university symbols and traditions is nothing new; it takes place on a regular basis through the institution.

This means that various conversations take place to consult students on the evaluation of their residence’s values, symbols, systems and traditions in a changing South Africa. The university is deeply committed to continuously renewing its residence cultures through focused conversations in order to be more inspiring and welcoming to all students. The involvement of students in co-creating such spaces remains paramount.

The university regrets the deliberate and misleading information in the media on the process underway in JBM. The importance of student involvement consequently calls for the distribution of accurate information in order to avoid uncertainties, misunderstandings and incorrect perceptions.

It is therefore important to state the following regarding the current renewal process in JBM Hertzog:

1. No memorabilia or photos have been removed, and no final decisions have been taken in this regard. These decisions form an integral part of the consultation process described above.

2. The name of the residence (among other symbols) is part of the consultation process. It is also important to note that all suggested name changes at the UFS are subject to the approval of the institutional Naming Committee and the University Council.

3. The perception that this process is being used to eliminate certain unique cultural identities is incorrect. However, what this process aims to achieve is a more inclusive and welcoming residence culture, and throughout this will be done in consultation with all students.

All current residents of JBM Hertzog are invited to form part of this renewal process. In conclusion, the UFS wishes to convey its appreciation to the Residence Committee members and the residents for their positive attitude and continuous support during this very important process.

Prof Jonathan Jansen
Vice-Chancellor and Rector
University of the Free State
 

Issued by: Lacea Loader (Director: Communication and Brand Management)
Telephone: +27(0)51 401 2584 or +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept