Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Like Idols for scientists
2014-04-10

Kovsie student and scientist Karabelo Moloantoa recently represented the Free State in the South African finals of the FameLab competition during the Sci-Fest in Grahamstown.

Karabelo is a 24-year-old student doing his master’s in Biotechnology. He completed his Bachelor’s degree in Medical Microbiology, as well as his Honours degree in Biochemistry at Kovsies. His research is focused on Bioremediation of mine waste waters.

“FameLab is like the scientists Idols taking place annually,” says Karabelo.

“In the competition we are given three minutes to explain a science aspect to a non-science audience. There are 25 countries that participate. South Africa is the only African country participating.”

“I was called by one of my lecturers an hour before the local competition took place at the National Museum in Bloemfontein. I was actually still tired from playing volleyball the night before,” he explains. “I was unprepared and without slides, but I did my presentation.”

This was the first year Karabelo entered FameLab and although he was somewhat unprepared for the local competition in Bloemfontein, he was nominated to represent the Free State in Grahamstown at the Sci-Fest event. From the 18 semifinalists, Karabelo qualified to go the finals where the 9 finalists were competing to represent South Africa in the United Kingdom for the international finals.

“I did not win the UK trip, but I made it to the finals, which is an achievement as half of the semi-finalists could not make it to the finals,” says Karabelo.

“I feel like I have done well to represent the university and the province as a whole. It was amazing to speak in front of more than 800 people, delivering my presentation. I learnt a lot and improved my skills of communicating scientific aspects. I will definitely enter again next year.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept