Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Cultural immersion programme for Rutgers University students
2014-07-29

 

After a community engagement induction, Rutgers University students head out to visit communities.
Photo: Supplied

The International Office and the Department for Community Engagement will host a week-long cultural immersion programme for eight students of Rutgers University from 27 July – 2 August 2014. The Rutgers Graduate School of Education's South Africa Initiative (SAI) bridges cultures, connects educators and provides hope for learners and students from South Africa and the United States.

This interdisciplinary programme provides teachers and students on both sides of the world with the opportunity to exchange information through service learning, training and distance technology. This leads to educational gains for students and educators in both countries.

The Rutgers group of master’s, PhD and undergraduate students will visit two NGOs working with children at risk in the community of Heidedal, namely Tshepo Foundation and Lebone Village. The week-long programme will include lectures on the social, cultural and historical background of pre- and post-apartheid South Africa. Speakers from various departments and faculties of the UFS will feature during this event. These include the Institute for Reconciliation and Social Justice, the Postgraduate School, the Department of History, African Languages, as well as Education.

Prof André Keet, Director of the Institute for Reconciliation and Social Justice, will share the transformation story of our university with the group. Dr Henriette van den Berg will speak on mentoring postgraduate students to become successful researchers of the future.

This year marks the 12th anniversary of the SAI Cultural Immersion Program and a fruitful partnership with the UFS and other South African universities. Over the years SAI has provided tonnes of school books and supplies which have been shared with more than 2 000 learners in South Africa. Special projects such as the Literacy Through Photography and Brielle Digital Stories Project have been conducted by SAI alumni in schools. These have resulted in thousands of dollars of support given directly to South African schools.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept