Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Producers to save thousands with routine marketing strategies, says UFS researcher
2014-09-01

 

Photo: en.wikipedia.org

Using derivative markets as a marketing strategy can be complicated for farmers. The producers tend to use high risk strategies which include the selling of the crop on the cash market after harvest; whilst the high market risks require innovative strategies including the use of futures and options as traded on the South African Futures Exchange (SAFEX).

Using these innovative strategies are mostly due to a lack of interest and knowledge of the market. The purpose of the research conducted by Dr Dirk Strydom and Manfred Venter from the Department of Agricultural Economics at the University of the Free State (UFS) is to examine whether the adoption of a basic routine strategy is better than adopting no strategy at all.

The research illustrates that by using a Stochastic Efficiency with Respect to a Function (SERF) and Cumulative Distribution Function (CDF) that the use of five basic routine marketing strategies can be more rewarding. These basic strategies are:
• Put (plant time)
• Twelve-segment pricing
• Three-segment pricing
• Put (pollination)(Critical Moment in production/marketing process), and
• Pricing during pollination phase.

These strategies can be adopted by farmers without an in-depth understanding of the market and market-signals. Farmers can save as much as R1.6 million per year on a 2000ha farm with an average yield.

The results obtained from the research illustrate that each strategy is different for each crop. Very important is that the hedging strategies are better than no hedging strategy at all.

This research can also be applicable to the procurement side of the supply chain.

Maize milling firms use complex procurement strategies to procure their raw materials, or sometimes no strategy at all. In this research, basic routine price hedging strategies were analysed as part of the procurement of white maize over a ten-year period ranging from 2002–2012. Part of the pricing strategies used to procure white maize over the period of ten years were a call and min/max strategy. These strategies were compared to the baseline spot market. The data was obtained from the Johannesburg Stock Exchange’s Agricultural Products Division better known as SAFEX.

The results obtained from the research prove that by using basic routine price-hedging strategies to procure white maize, it is more beneficial to do so than by procuring from the spot market (a difference of more than R100 mil).

Thus, it can be concluded that it is not always necessary to use a complex method of sourcing white maize through SAFEX, to be efficient. By implementing a basic routine price hedging strategy year on year it can be better than procuring from the spot market.

Understanding the Maize Maze by Dr Dirk Strydom and Manfred Venter (pdf) - The Dairy Mail


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept