Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Young researcher from UFS on SAYAS executive committee
2014-10-28



Dr Aliza le Roux
Photo: Sonia Small
Dr Aliza le Roux from the Department of Zoology and Entomology on the UFS’s Qwaqwa Campus is one of ten young scientists who was recently inaugurated as a new member of the South African Young Academy of Science (SAYAS). Not only was she inducted into the society this past October, but she was also elected to serve on the executive committee for SAYAS.

Dr Le Roux’s research focus is on cognitive ecology, behavioural ecology and zoology. She has expressed her excitement about the new position, and is already developing new ideas with her new colleagues on drawing more young people into the South African scientific community.

This position provides a regional and international platform to raise the profile of science in general, and Le Roux hopes to be active in SAYAS’s new mentorship collaboration with the New York Academy of Sciences, and to introduce new methods of scientific outreach using social media. Inspired by the students on the Qwaqwa Campus, Dr Le Roux hopes to specifically target relatively isolated rural campuses in SAYAS’s activities.

Prof Corli Witthuhn, Vice-Rector: Research at the UFS, said, “Aliza le Roux is an outstanding young scientist on our Qwaqwa Campus. I am very excited about the young researchers on our Qwaqwa Campus with Aliza as one of the leaders, and I am looking forward to what else they can achieve in the next five years.”

SAYAS was launched in October 2011 with 20 founding members as a mechanism to propel South Africa’s young scientists to fully participate in relevant local and international research and development agendas. It provides a national platform where leading young scholars from all disciplines in the country can interact, and also access international networking and career development opportunities.

SAYAS contributes primarily to the achievement of the national strategic priority of strengthening the skills and human-resource base of the country. Its particular niche is to focus on strengthening high-level skills among young scientists and the promotion of scientific excellence.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept