Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Shimlas still the only unbeaten side in 2015 Varsity
2015-03-18

The Shimlas remain the only unbeaten side in this year’s Varsity Cup rugby tournament after their bonus-point 44-24 win against the University of Cape Town Ikeys in Bloemfontein.

The home side managed a very comfortable 34-8 lead in the first half against the defending champions Ikeys. No matter how hard the Ikeys fought back, the Shimlas win was inevitable, and secured the first ever home semifinal at the UFS.

It was in the second minute that Shimlas’ Gerhard Olivier went over the try line. The Shimlas continued to press forward, and kept the game play primarily in the UCT half of the field. By the time the first Strategy Break came along, the Shimlas already had a 21-0 lead over their visitors. The Ikeys did manage one converted try before halftime, still leaving the home side with  a 34-8 lead.

After halftime, there was still no stopping the Shimlas. Even when UCT’s attempt at a comeback saw them scoring their second converted try, the point difference were still 18 points. Shortly after, Olivier scored his third try for the Shimlas. The Ikeys’ response to this was scoring a third try in their comeback effort, putting the scoreboard at 39-24 with Shimlas still in the lead after 65 minutes.

Despite Ikeys’ attempt for their bonus point try near fulltime, Shimlas’ counter-attack saw their replacement player Boela Venter cross the try line for the last  time to secure a 44-24 win for the home side.

The Shimlas will host North-West University’s Pukke side at Shimla Park in the last round of the tournament this coming Monday. For the first time since the Varsity Cup’s inauguration in 2008, the UFS side has already secured a home semifinal for the week after.

Shimlas point scorers:

Tries: Gerhard Olivier (3), Johan van der Hoogt, Danie Maartens (2), Boela Venter
Conversion kicks: Niel Marais (3)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept