Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Prototype film degree introduced for Kovsies
2015-06-11

 

As of 2015, the university’s postgraduate prospectus was modified to include a new Bachelor of Arts Honours in Film and Visual Media course in the Faculty of the Humanities.

A group of eight pilot students are being exposed to basics studies in film history, research, and practical production exercises. The programme’s prototypical nature lies in its inter-disciplinary approach, which means students will integrate film history and theory with individual short film production. 

According to the Programme Committee, “the two parts enrich each other, so students’ practical work is conceptually much stronger, and their written work is more balanced.”

“While other universities locally and abroad do offer film qualifications, the emphasis usually falls on either the history and theory of film, or the making of films.  Our programme is the only one in South Africa (that we know of) that offers this specific kind of integration.”

Chris Vorster, Dr Anthea van Jaarveld, Prof Helene Strauss, and Johanet Kriel are responsible for lecturing, and providing personalised supervision to students. These lecturers form part of a Programme Committee, which also includes Prof Annie van den Oever, Cloete DeBeer, and Martin Rossouw.

The university has built a multi-camera studio, equipped with state-of-the-art equipment, editing facilities, and an intimate movie theatre to facilitate a thorough teaching and learning process.

Rethabile Radebe, one of the students, says she values the teaching approach of the lecturers, highlighting the positive impact of constructive criticism they offer. “My self-confidence is much better so I think, even though they help you academically for you to get your grades correctly, they also help you as a person. When you’ve done well, they don’t forget to tell you.”

This student’s views run parallel to Kriel’s, which are to “help students to perform at their best, and to develop and align our curriculum better for next year,” when an additional seven students are to be accommodated. The university, in collaboration with the University of Groningen in the Netherlands, is modelling the curriculum to ensure holistic film education. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept