Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

UFS hosts a successful New Music Indaba
2015-08-18

  

Held at the University of the Free State’s Odeion School of Music (OSM), the NewMusicSA’s New Music Indaba 2015 featured works which Clare Loveday described as “breathtaking, discreet, and perfectly balanced.”

Loveday, one of South Africa’s acclaimed music critics and was Composer-in-Residence for the annual Johannesburg International Mozart Festival, attended the Indaba from 21-26 July 2015. In a review of Saturday’s gala concert, she referred to recitals of this nature as an “essential part of the South African musical landscape, providing musicians and composers a space in which to express their world.”

Staff and students of the OSM were extensively involved in facilitating the festivities as a symbol of commitment to South Africa and international contemporary art music. The OSM Camerata under the baton of Xavier Cloete performed two works by South African composer Hendrik Hofmeyr well as a work by young Argentinian composer Diego Soifer entitled Mille Regretz .The festival featured music theory lectures, a variety of workshops, roundtable discussions ,concerts as well as an outreach programme.

Loveday described the highlight of her Indaba experience as “A delicate construction of sounds and silences that drew the listener into a focused and intense sound world,” a highlight created by the visiting German composer, Charlotte Seither’s “Far From Distance” for piano, clarinet, and cello. The concert evening culminated with Diale Mabitsela's "Friday Nights at Six," adding to the spectacular nature of the festival.

Throughout the week, classical chamber works featuring South African New Music Ensemble (SANME), the Choir of Christ Church Arcadia, and the Odeion Vocal Consort were performed and well-received. Bringing the five-day event to a conclusion was a choral mass at the Bloemfontein Anglican Cathedral, featuring an “Agnus Dei” written by George T. King.
 
Douglas Scott, Curator of the 2015 Indaba, reflected on it as a great success, saying that, “most of the participants agreed the event was a wonderful opportunity simply to hear different voices from the composition community juxtaposed with one another.”

From Scott’s perspective, the principal goal was to foster communication between artists with different visions, and to reach out to the local community.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept