Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Diligence to be rewarded at the 2015 Spring Graduation
2015-09-15

The hard work of many students finally comes to fruition with this year’s spring graduation ceremonies taking place on Thursday 17 September 2015 on the Bloemfontein Campus.

A total of 124 diplomas, 419 bachelors and 56 honours degrees will be conferred on graduates from all seven faculties of the University of the Free State (UFS). In addition to the 599 conferrals, Professor Jeffrey Sachs, the world-renown American economist, will round out the number to 600 as the recipient of an honorary doctorate.  

The Faculty of Economic and Management Sciences wishes to express appreciation for his extensive contribution towards economic, social, and political development across borders with an honorary doctorate in Economics.

Prof Sachs has had a positive impact on global peace and security, climate change, sustainable development, human rights promotion, and governance through various platforms, including being a Special Advisor to United Nations (UN) Secretary-General, Ban Ki-moon, on the Millennium Development Goals (MDG). He also served as the Secretary-General’s MDG Advocate and Commissioner of the International Telecommunication Union (ITU)/United Nations Educational, Scientific and Cultural Organization (UNESCO) Broadband Commission for Development.

In addition, Prof Sachs serves as the Director of the Earth Institute at Columbia University and Director of the UN Sustainable Development Solutions Network. As an author, he has featured three times on the New York Times bestsellers list, and is the co-founder of the Millennium Promise Alliance, and drives the Millennium Villages Project as its Director.

Graduates should expect words of salutation and encouragement from our main speaker, the Vice-Chancellor and Rector of the university, Prof Jonathan Jansen.

Two ceremonies will take place in the Callie Human Centre at 09:00 and 14:00 respectively. Attendees of the afternoon ceremony will witness the conferment of Prof Sach’s degree. There is a live stream option available on the university’s website to individuals who are unable to attend the ceremonies.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept