Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Researchers reach out across continents in giraffe research
2015-09-18

Dr Francois Deacon and Prof Fred Bercovitch
busy with field work.

Researcher Dr Francois Deacon from the Department of Animal, Wildlife, and Grassland Sciences at the University of the Free State is conducting research with renowned wildlife scientist, Prof Fred Bercovitch, from the Center for International Collaboration and Advanced Studies in Primatology, Kyoto University Primate Research Institute in Japan.

Dr Deacon’s ground-breaking research has attracted international media attention. Together with Prof Nico Smit, he equipped giraffes with GPS collars, and conducted research based on this initiative. “Satellite tracking is proving to be extremely valuable in the wildlife environment. The unit is based on a mobile global two-way communication platform, utilising two-way data satellite communication, complete with GPS systems.”

Prof Bercovitch was involved with GPS tracking from elephants to koala bears.

Some of the highlights of the joint research on giraffes by Dr Deacon and Prof Bercovitch focus on:
 
• How much time do certain giraffes spend with, and away from, one another
• How do the home ranges of herds and individual giraffe overlap
• Do genetically-related animals spend more time together than non-genetically-related animals
• How much time do the young bulls, adult bulls, and dominant bulls spend with cow herds
• Herd interactions and social behaviours of giraffe
• The role of the veld and diet on animal behaviour and distribution

 

Their research article, “Gazing at a giraffe gyroscope: Where are we going?”, which was published in the African Journal of Ecology, assesses recent research by exploring five primary questions:

- How many (sub) species of giraffe exist?
- What are the dynamics of giraffe herds?
- How do giraffe communicate?
- What is the role of sexual selection in giraffe reproduction?
- How many giraffe reside in Africa?

They conclude this article by emphasising that the most essential issue is to develop conservation management plans that will save a wonderful species from extinction, and which will also enable scientists to conduct additional research aimed at answering their five questions.

In addition, they are working together on a grand proposal to get National Geographic to cover their work.

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept