Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Student gives hope to childhood cancer patients
2015-10-16


Siphokuhle Jama believes that the underprivileged are also destined to reign.

The inaugural ‘Dance and Musical Childhood Cancer Fundraising Day’, held on Saturday 26 September 2015 at the Free State Childhood Cancer (CHOC) Foundation, was “a huge success,” according to Siphokuhle Jama, the organiser.

Siphokuhle is a second-year BSc Agricultural Economics student at the University of the Free State (UFS), who has devoted his life to bettering the lives of the less fortunate. The 21-year-old self-proclaimed motivational speaker, entrepreneur, and budding author was inspired by his humble beginnings to found the Destined to Reign Foundation, which champions various community initiatives in both his home town of Mtata and Bloemfontein.

To support the fight against childhood cancer, the young philanthropist took it upon himself to invite music and dance fanatics either to perform or to enjoy spectatorship for a good cause. The impressive support received from the UFS, Universitas Academic Hospital, and Central University of Technology (CUT), various artists, and the community has contributed towards ensuring that the inaugural fundraiser was a prelude to annual events to come.

Singers, dancers, and poets entertained the audience with vigour, making the day one of the most special for the young children, who spend their days and nights at the CHOC House, with little to do but undergo radiation and chemotherapy and await a discharge date. .

All proceeds went towards basic needs, such as food, toiletries, and clothing for the children residing at the House, which is located in the same suburb as our university. In addition to accommodating dozens of cancer patients and their mothers, the House also assists with the treatment and rehabilitation of children suffering from life-threatening blood disorders. Thus, the fundraiser served to promote awareness of these health conditions.

Siphokuhle’s passion for giving hope to the underprivileged was unveiled by a school community engagement project 14 years ago. He has never looked back.“It has always been in my heart to serve my community,” he said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept