Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Neonatal Care Unit receives donation to expand capacity
2015-10-28

  

With the best care and technology available,
the survival rate of premature
babies is about 85%. The neonatal intensive
care unit at the Universitas hospital can now
expand its capacity thanks to a donation of
R1 million by the Discovery fund.
From the left is Prof André Venter.
Head: Department of Paediatrics and
Child Health at the UFS, and mrs Ruth Lewin,
Head: Corporate Sustainability at Discovery. 

The smallest people need the greatest care. This care is being provided by the neonatal unit in the Children’s Wing of the Universitas Hospital. This project of the University of the Free State (UFS), under the leadership of Prof Andre Venter, has led to several miracles regarding child health since its inception.

Now, thanks to a donation of R1 million rand from the Discovery fund, this unit can expand its capacity and treat more premature babies.

About 14% of babies in South Africa are born before the 37th week of pregnancy. These babies are born with a very low birth weight, and are in need of critical care. The neonatal intensive-care unit at Universitas Hospital is currently equipped to take care of about 14 premature babies at a time, from birth to discharge. However, because of the high incidence of premature births in the hospital’s service area, the unit needs about 45 beds.

The aim of the Children’s Wing Project is to expand the neonatal intensive-care unit in order to meet the demands of the hospital’s service area, which reaches as far as the Southern Cape. The Discovery Fund recently donated R1 million to the project, which will be used to expand the capacity of the neonatal intensive-care unit.

“With the best care and technology available, the survival rate of premature babies is about 85%. Without this, half of all premature babies would die,” says Prof Venter, Head: Department of Paediatrics and Child Health at the UFS.

“This is the reason why private and public partnerships, such as the one with Discovery, are essential to make specialised services available to the most vulnerable people. Discovery has made a significant contribution to the project without which we would not have been able to expand the capacity of the unit



We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept