Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

We must rise again, says Dr Luescher
2016-05-04

Description: 2016 05 04 Dr Luescher sml Tags: 2016 05 04 Dr Luescher
Dr Thierry Luescher, Assistant Director of University of the Free State Directorate for Institutional Research and Academic Planning, was one of the guest speakers at the first TEDxUFS event of the year on the Bloemfontein Campus. Here he is explaining where the #movements started, and how to change the way we think. Photo: Marli du Plessis.

The student protests, known as the #MustFall movements, started on 9 March 2015, when students protested in a well-rehearsed manner at the Cecil John Rhodesstatue at the University of Cape Town. After this protest, students all over South Africa started their own movements from #OpenStellies to #SwartsMustFall, the latter happening on the Bloemfontein Campus of the University of the Free State (UFS) in March 2016. But, as Dr Thierry Luescher, Assistant Director of UFS Directorate for Institutional Research and Academic Planning, says: “We shall soon run out of #MustFalls. Maybe it is time that we rise again.”

The first TEDxUFS was held on Friday 15 April 2016 at the New Education Building on the Bloemfontein Campus of the UFS. Dr Luescher shone light on the way we look at hashtag movements. At the conference, he was one of the guest speakers who shared their perspectives on the theme of #ImpossibleIsNothing. The others were Ndumiso Hadebe, and Fezile Sonkwane.

Changing angles

No matter what the issue, whether it is on a campus or not, the same reaction can be expected by all: they burn things to get attention. In retrospect, this is our political culture. This is what we have been told to do if we need answers. There is a much faster and cheaper way to attract people’s attention: the hashtag movements, says Dr Luescher.

Stop the fire

He argues that we should stop burning down buildings and vandalising properties. What we need is people with intellect to use their words. We, as students, have to take back our voice. We need to stop this self-pitying, and take a stand.

Students have the power to change lives. We would be able to reach as many as 1.4 million people with our tweets or instagram accounts. According to Dr Luescher, the time for violence has come to an end.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept