Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Want to make a difference in the world? Here is how.
2016-05-13

Video
Student Bursary Fund Campaign booklet (pdf)
Donate
Student Bursary Fund Campaign launched: #FundAFuture and make a difference
Motho ke motho ka batho. A person is a person through others

 

We live in a world filled with want. Often, we ache to make a difference, but become overwhelmed and despondent when we look into this chasm of need. However, the University of the Free State (UFS) has created a way for each of us to change lives, in much the same way that the life of Nozi Bonje has been changed.

“Through the opportunities given to me, I realised that you don’t have to be defined by the school you went to. You can do so much more – and you can dream big dreams and realise them.”

Then
The early chapters of Nozi’s life story reveal a shy girl, hiding between the pages of her books on the playground of a township school. With barely a whisper, Nozi was slipping into a desolate future where dreams existed only in sleep.

Now

Today, that timid young girl has grown into a woman who throws her head back in effortless laughter, confidence sparking off her in bright arcs. What changed the trajectory of her future? Financial support for a tertiary education altered Nozi’s life permanently.

“If I didn’t go to university, I would have been this sad little person,” she remarks. “Studying is not just about learning from a textbook, though. It also challenges you to think critically. You start seeing things in a different perspective, and respond differently.”

Description: Nozi_FundAFuture Tags: Nozi_FundAFuture

Nozi Bonje
Photo: Sonia Small

Giving back
Funding enabled Nozi to obtain a BSc degree in Human Molecular Biology at the UFS in 2015. She was one of the top students in her class. Inspired and driven, she is currently pursuing an honours degree in Molecular Genetics, also at the UFS.

“My main dream is to make a difference in people’s lives. For me, it’s all about giving back, because so many people helped me throughout my journey.”

Student Bursary Fund Campaign

In order to help increase the number of lives transformed through higher education – such as Nozi’s – the UFS has established the Student Bursary Fund Campaign. This campaign aims to raise money to fund talented, deserving students who lack the financial means of obtaining a university degree. We cannot do this alone, though.

Your support is crucial.

Each contribution will bring us closer to our goal while changing the future of our youth. Visit our Giving page for ways to donate.

 


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept