Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

UFS academics nominated for NSTF Awards
2016-05-19

Description: Zakkie Pretorius Tags: Zakkie Pretorius

Prof Zakkie Pretorius

Prof Zakkie Pretorius and Prof Maryke Labuschagne, researchers in the Department of Plant Sciences at the University of the Free State (UFS), have been nominated for the 2016 awards of the National Science and Technology Forum (NSTF) in partnership with South32.

The NSTF awards recognise outstanding contributions to science, engineering, and technology (SET) and innovation for researchers and other SET-related professionals. The awards are referred to as the ‘Science Oscars’ of South Africa, as they are the largest, most comprehensive, and most sought-after national Awards of their kind. Among other things, the NSTF aims to celebrate, recognise, and reward excellence in science, engineering, technology and innovation within the SET sectors.

Prof Pretorius was short-listed as a finalist in the category: Lifetime Award for an outstanding contribution to SET and innovation by an individual over a period of 15 years or more.

Description: Maryke Labuschagne Tags: Maryke Labuschagne

Prof Maryke Labuschagne

He works on crop quality and disease resistance in the field crops research chair headed by Prof Labuschagne in the Department of Plant Sciences. Disease-resistance breeding is a continuation of the internationally-acclaimed wheat rust research that Prof Pretorius has been conducting during his career.

Prof Labuschagne is a finalist in the category: Special Award in Crop Science and Food Security. This is a special award by the NSTF this year, in honour of the 2016 International Year of Pulses, as declared by the United Nations.

Prof Labuschagne heads the research chair on quality and diseases in field crops at the UFS. Her research, and that of her students, focuses on the genetic improvement of food security crops in Africa, including such staples as maize and cassava.

At a Gala Dinner on 30 June 2016, the finalists will be honoured before the Minister of Science and Technology, the patron of the occasion, announces the winners of the 2015/2016 awards.   

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept