Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Meet our Council: Likeleli Mphutlane
2016-08-03

Description: Likeleli Mphutlane  Tags: Likeleli Mphutlane

Likeleli Mphutlane

The University of the Free State (UFS) has long been considered a leader in diversity.  Its diverse character is nowhere more apparent than on the UFS Council, where different voices with differing viewpoints and diverse cultural backgrounds strive to lead the institution to greater heights.

One such voice belongs to Likeleli Mphutlane, who has been serving on the UFS Council since 2015. This dynamic young woman was born in Bethlehem, raised in Lesotho, and matriculated at Louw Wepener High School as a Matriculant of the Year Top 14 finalist.

Studies at the UFS


She completed a BAcc degree at the UFS, while serving as vice-primaria of Welwitschia Residence, after which she obtained a BAcc Honours degree from the University of South Africa.

She qualified as a Chartered Accountant in 2014. After gaining work experience at PricewaterhouseCoopers and SAB, she works now as an independent consultant in her own company, Inspire Innovation Business Consultants.

Likeleli serves on the audit and risk committee and the financial committee of the Council.

The difference she makes

"I believe that my role on the Council is to share my expertise and skills to ensure that the university upholds the highest standards of governance, and achieves its objectives of remaining financially sustainable. I also think that, as a black female alumnus, I bring a diverse viewpoint to the Council," she says.

While her responsibilities as co-founder of the Lesotho Young Professionals Forum, and chairperson of the Free State branch of the Association for the Advancement of Black Accountants South Africa, keep her busy, she enjoys physical activity, and travelling with her husband, Stephen Monyamane.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept