Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

One, two, three – is your thesis done?
2016-08-26

Description: three-minute-thesis  Tags: three-minute-thesis

Winners of the UFS Three-Minute-Thesis competition.
From the left: Thutukile Jita, Natural/Social Sciences
PhD winner; Saheed Sabiu, Natural/Health Sciences
and audience-favourite PhD winner;
Matseliso Mkotywa, master’s audience-favourite
winner; Zingisile Mbo, Natural/Health Sciences
master’s winner.
Photo: Charl Devenish

“Next time you have three minutes to spare, try to formulate your master’s or doctoral thesis,” says Dr Henriëtte van den Berg, Director of the Postgraduate School at the University of the Free State (UFS).

The much anticipated Three-Minute-Thesis (3MT) Competition took place at the UFS Bloemfontein Campus on Friday 19 August 2016. Diverse and interesting research projects were discussed, giving one a glimpse into months and even years of hard work and dedication.

A learning opportunity for candidates
The 3MT competition is an international event founded at the University of Queensland, Australia. It is divided into master’s and PhD categories.  At the UFS competition, the master’s section was dominated by the Medical and Natural Sciences, in contrast with the PhD section’s focus on Social Sciences. “The competition is a learning opportunity for our UFS candidates,” says Dr Henriëtte van den Berg.

Thought-provoking research presented
Interesting methodologies and research questions sustained the academic excellence the candidates pride themselves in. Saheed Sabiu, PhD candidate and winner, constructed his thesis around, Waste to Health: Corn silk in the Management of Kidney Diseases. “Use corn silk (white fibre around corn) in the same manner as a tea bag, to help manage kidney diseases,” says Sabiu.

Audience members also had the opportunity to ask the candidates questions relating to their thesis topic.

Winners at the event:
•    Master’s winner: Zingisile Mbo
•    PhD winner: Natural/ Health Science: Saheed Sabiu
•    PhD winner: Natural/Social Sciences: Thutukile Jita

The winners of each category received a cash prize and will represent the UFS at the national 3MT competition, hosted by the UFS in November this year.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept