Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Postgraduate studies can open doors to a successful career – Top 50 Economics students advised
2016-10-18

Description: Top 50 Economics students  Tags: Top 50 Economics students

Economics 4: Students Veda Hendrikse and Merrylyn Shumba, Chris Scheepers (Sanlam), Dr Johan Coetzee and Johannes de Klerk (Sanlam).
Photo: Leatitia Pienaar

The Department of Economics in the Faculty of Economic and Management Sciences held a reception for its top 50 students on 10 October 2016 on the Bloemfontein Campus.

Speaking at the event, Mr Rocco Carr, business development manager at Glacier Investments by Sanlam, encouraged students to enrol for postgraduate studies in Economics and Financial Economics. He said the South African economy was not stable at the moment due to various factors such as politics. However, it was interwoven with the global economy and circumstances might change to make the country prosperous again in the future. ”The interest rates, the upcoming presidential election in the US, the economic changes in China, Brexit, and the economic changes in the European Union are some of the factors that are at play in the South African economy,” he said.

He further encouraged students to be prepared for the workplace by developing their work ethic and learning to take responsibility as this would help them grow a successful career despite economic volatility.

Dr Johan Coetzee, acting head of the Department of Economics, said the three honours programmes – Economics, Financial Economics and Investment Management, and Applied Econometrics – were internationally accredited and could open many doors to students. “Training is not only about what you can do, also how you think and how you manage people. Managing people has become more important than ever before,” Coetzee said.

The department hosts its top 50 students each year to expose them to courses they can take at postgraduate level and the career opportunities that lie ahead.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept