Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Achieve academic goals with an online presence
2016-10-28

Description: Achieve academic goals  Tags: Achieve academic goals

Photo: iStock

With the recent break in the academic activities at most of the countries’ universities, higher education managers are pressured to come up with ways of completing the rest of the 2016 academic year.

An approach introduced by the University of the Free State (UFS), is the use of online learning platforms.

For the remainder of the year, students will be required to do the majority of their work online. To support students during this time, the UFS has created an Academic Reboot Pack 2.0, which included #8 Habits of Highly successful online students.  

Stay informed and prioritise your work
Make the online environment the top priority in your daily schedules. Be extra vigilant in your studies and use online learning platforms such as Blackboard to check your modules for new announcements and academic information.

You will also need to prioritise between important and less important tasks. This will give you an indication as to which tasks to focus on first.

Optimise your environment and work until you achieve goals
You need to optimise your study environment in a space where you can be productive and study efficiently. Continue working until you have achieved your goals, but also remember to reward yourself when you have reached them.

Staying organised
Remember, you need to stay organised and declutter your environment. It will be best to create a filing system for your paper-based notes, as well as the electronic files on your computer.

Get study buddies and keep a healthy body and mind
Get study buddies as this provides a good opportunity to share knowledge. If you are not sure about something, contact your lecturers via email or on their office numbers.

Lastly, keep a healthy body and mind because you will need to keep going a little longer than anticipated this year.

Get your copy of the Academic Reboot Pack 2.0 on Blackboard under announcements or click here to download it.

Also see the first Academic Reboot Pack.

If students have any question or queries regarding the Academic Reboot Pack 2.0, they can send an email to: advising@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept