Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Farewell to the Class of 2015
2016-12-07

Description:Class of 2015 Tags: Class of 2015 longdesc=


Some of the students from the Class of 2015

The First Year Leadership for Change programme (F1 L4C) hosted its final graduation ceremony for the class of 2015.

Launched in 2010, the programme gives first-year students international exposure to top universities across the world, providing invaluable opportunities to explore the concepts of transformational leadership, global citizenship and social cohesion.

The 32 students and six staff mentors visited various universities which included, New York University, Rutgers University, Edmonds Community College and Washington University ­- all in the US, Mahasarakham University in Thailand and Vrije University in the Netherlands.

Making a change through critical thinking

Pura Mgolombane, Dean of Student Affairs at the University of the Free State (UFS), challenged the students to think about making a change and to critically think about themselves and how they see the world.

The graduation function, which took place on 16 November 2016, saw the class of 2015 come together to celebrate their accomplishments over the year and allowed the class representative, Tammy Fray, to reflect on all of the valuable lessons learnt.

Special announcement to end the evening

Throughout the evening, representatives from previous years testified to the impact the programme had on their personal development, leadership pathways and their learning communities. The audience was charmed with a song by Stefan Lotter, current chair of the F1 Fellowship Association, and the Delicate Artistry Band.

The evening ended with a special word by Prof Nicky Morgan, acting Rector of the UFS, who convinced by alumni’s testimonies, acknowledged what the exceptional programme had delivered over the past six years. Although it was at the end of its lifetime, he said that in review, ideas emerging from the programme should be explored to give birth to something new.  Watch this space!

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept