Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Boyden observatory celebrates its achievements
2004-10-05

The red carpet will be rolled out and champagne glasses filled tonight when the Boyden Observatory outside Bloemfontein will launch the first phase of the new science centre.

This phase, which was completed earlier this year, consists of a new auditorium, reception area and paths which connect educational visiting points on the Boyden terrain.

“Over the past two years the Boyden Observatory has been re-sited as a research, educational and public facility. The new facilities are now being utilised for educational and public programmes. The 1,5m Boyden telescope has also recently been upgraded and is used for research purposes,” says Dr Matie Hoffman from the University of the Free State’s (UFS) Department of Physics, who is responsible for the management of the centre.

“The Boyden Observatory is a unique facility of the UFS - we are one of the few universities in the world who has its own observatory,” says Dr Hoffman.

“The main purpose of the science centre is to create enthusiasm for science amongst the public. The centre also has a great educational function and focuses specifically on the improvement of the quality of science education in the Free State,” says Dr Hoffman.

Fund-raising for the planned second phase of the science centre, which will consist of interactive in- and outside exhibition areas, will also start tonight. “After the completion of the second phase the Boyden Observatory will probably become the most accessible and public-friendly observatory in the country and a great asset for the Free State Province,” says Dr Hoffman.

A small robotic telescope, which will be controlled from the University College Dublin in Ireland, will also be installed at the Boyden Observatory this year.

“Just as this year is a significant one for the UFS with its centenary celebrations, so it is also a significant one for the Boyden Observatory. The Harvard University in the United States of America started with the construction of the original 1,5 m telescope in its original form 100 years ago, the telescope was put in place at Boyden 70 years ago and Mr Uriah Boyden – the person who donated the money with which the Boyden Observatory was constructed, was born 200 years ago,” says Dr Hoffman.

The first phase of the science centre was built with funds sponsored by the AngloGold Fund, the Shuttleworth Foundation, the Charl van der Merwe Trust and the Lila Theron Trust. Donations from the Friends of Boyden Observatory and other individuals also contributed to the success of the project.

Those who are interested in educational tours of the science centre can contact Dr Hoffman at (051) 401-2322.

Media release
Issued by: Lacea Loader
Media Representative
Tel: (051) 401-2584
Cell: 083 645 2454
E-mail: loaderl.stg@mail.uovs.ac.za
5 October 2004

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept