Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

UFS has a contingency plan for load shedding
2008-02-13


The University of the Free State (UFS) has put in place a contingency plan to ensure that there is minimal disruption to the normal academic operations of its Main Campus in Bloemfontein whenever load shedding occurs.

The plan includes alternative arrangements for certain lectures that fall within the load-shedding schedule provided by Centlec, the emergency power generation for certain lecture halls and buildings, as well as the functioning of the UFS Sasol Library. This is in addition to emergency power equipment that has already been ordered for the larger lecture-hall complexes.

Fortunately, the Qwaqwa Campus has adequate emergency power generation capacity. The situation on the Vista Campus in Bloemfontein is being monitored, but the same guidelines will apply as on the Main Campus.

On the Main Campus in Bloemfontein the following alternative arrangements regarding the timetable for evening classes will come into effect when load shedding occurs:

  • An alternative module and venue timetable has been compiled so that classes that cannot take place on weekdays as a result of load shedding can be accommodated on Fridays and Saturdays.
  • Classes that are presented in the timeslot 18:10 to 21:00 on Thursdays are alternatively accommodated in the same venues at the same times on a Friday.
  • Classes that take place in the timeslot 20:10 to 22:00 on Wednesdays are alternatively accommodated in the timeslot 08:10 to 12:00 on Saturdays, in a few cases in different venues from those scheduled initially.
  • After consultation with students, lecturers will decide whether the alternative timetable will apply when load shedding does indeed occur or whether the alternative timetable will be a permanent arrangement.

Some other steps that have been taken regarding the functioning of lecture halls include:

  • The design and installation of emergency power equipment in all the large lecture-hall complexes within the next few months. This includes the Examination Centre, Flippie Groenewoud Building, the Stabilis and Genmin lecture halls.
  • The ordering of a larger generator for the Agriculture Building to simultaneously provide essential research equipment such as refrigerators, ovens and glasshouses with emergency power.
  • An investigation into the optimal utilisation of present emergency power installations.
    The purchasing of loose standing equipment such as battery lights, uninterruptible power supplies, loose-standing generators, etc.

The UFS Sasol Library will continue as normal as far as possible though there may be some minor changes as a result of load shedding. The library has an emergency generator that will be used in the event of load shedding to allow students and other users to exit the library. If load shedding occurs during daylight hours, the library will remain open with limited services. If the load shedding occurs after 6 pm (18:00), all users will be allowed to exit and the library will remain closed until the next day.

A comprehensive investigation into the university’s preparedness for and management of long term power interruptions is also receiving attention.

More information on the contingency plan for load shedding can be obtained from the UFS website at www.ufs.ac.za/loadshedding.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
13 February 2008


 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept