Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

UFS first tertiary institution in SA to form association with the Arbinger Institute
2008-02-15

 

 A two-day seminar entitled: "The Choice and The Choice @ Work" was recently presented in Bloemfontein to companies in the Free State region. Here are, from the left: Mr Braam Botha (Well @ Work), Mr Jozef Myburgh (Telkom), and Dr Cobus Pienaar (from the Department of Industrial Psychology at the UFS and facilitator of the Arbinger Programme).
Photo: Lacea Loader

 

UFS first tertiary institution in SA to form association with the Arbinger Institute

The University of the Free State (UFS) has become the first tertiary institution in the country to form an association with the Arbinger Institute in the United States of America (USA).

“The Arbinger Institute is a global management training and consulting firm applying the implications of self-deception and its solutions to all aspects of organisational performance. Our association with this Institute is a major step for the development of leadership in the country,” says Mr Danie Jacobs, Head of the Centre for Business Dynamics at the UFS.

Dr Cobus Pienaar, from the Department of Industrial Psychology at the UFS, is currently the only licensed facilitator to present Arbinger’s work in South Africa. Dr Pienaar presents The Choice and The Choice @ Work programme on behalf of the Centre for Business Dynamics, under the banner of the UFS School of Business.

According to Mr Jacobs, the programme has already had successes in South Africa. “Dr Pienaar presented the first programme last year in Bloemfontein and Pretoria to leaders from various companies. The feedback on the application of the programme to the South African business environment was phenomenal,” says Mr Jacobs.

The Arbinger Institute’s change work grows out of the scholarly work of philosopher Terry Warner. With an international team of scholars, Warner has broken new ground in solving the age-old problem of self-deception, or what was originally called “resistance”.

“This phenomenon is at the heart of much organisational failure. It is the reason why many organisational problems seem so intractable at their core – they are in self-deception; they resist solution,” says Mr Jacobs.

Media release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
15 February 2008

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept