Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 April 2022 | Story Lacea Loader
NSFAS

The National Student Financial Aid Scheme (NSFAS) confirmed in a circular this week that monies will be paid to universities on 8 April 2022.

This will be the first payment that the University of the Free State (UFS) receives from NSFAS this year, as per the media statement by the Minister of Higher Education, Science and Innovation, Dr Blade Nzimande.

So far this year, the UFS management has made several concessions to students to alleviate their financial pressure while waiting for their NSFAS subsidies to be released.

This week, the university management – through active engagements and input from the Institutional Student Representative Council (ISRC) – agreed on the following process for book and meal allowances to be transferred to students’ bank accounts at the earliest possible opportunity:

  1. As in the past, the services of Fundi will be used to pay the allowances to students.
  2. Fundi will inform the recipients of monies received for them.
  3. After the banking details of students have been validated, monies are transferred to a student’s bank account. Fundi will inform students whose banking details are incorrect to rectify it on the Fundi website.
  4. Students who have not received payments before, will be requested to upload their banking details on the Fundi website, after which payment will be made.

It is anticipated that students whose bank accounts are with Standard Bank will receive notice of the payment of their allowance as soon as Friday, 8 April 2022.

Students banking with other banks will receive their payments subject to the inter-banking money transfer policies of the different banks, but not later than two business days after payment.

What students must do:

  1. Ensure that you upload the correct banking details.
  2. Upload your OWN banking details, not the banking details of friends or family.
  3. Ensure that your cellphone number is correct and active on PeopleSoft.
  4. Respond as quickly as possible to SMSes received from Fundi.

The university management would like to thank the majority of students for their patience during this difficult time while waiting for the NSFAS subsidies to be released.


Released by:
Lacea Loader (Director: Communication and Marketing)
Telephone: +27 51 401 2584 | +27 83 645 2454
Email: news@ufs.ac.za | loaderl@ufs.ac.za

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept