Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2022 | Story Leonie Bolleurs | Photo Supplied
Mpeti Morojele and Prof Jonathan Noble
Mpeti Morojele and Prof Jonathan Noble, Head of the UFS Department of Architecture, at the 33rd Sophia Gray Laureate exhibition at the Oliewenhuis Art Museum.

The Department of Architecture at the University of the Free State (UFS) this year hosted the first entirely face-to-face Sophia Gray lecture since the COVID-19 pandemic.

Talking about Changing Landscapes, Practice and Pedagogy, Mpeti Morojele presented the Sophia Gray lecture – the biggest and most prestigious architectural lecture of its kind in South Africa – as the 33rd Sophia Gray laureate. 

Hailing from the mountain kingdom of Lesotho, Morojele established his design practice, the award-winning MMA Design Studio in Johannesburg, in 1995.

Local and international recognition

He is recognised for his work locally and internationally. Some of his projects include the South African Embassy in Addis Ababa, Ethiopia, the South African Embassy in Berlin, Germany, the Maropeng Cradle of Humankind World Heritage Site, as well as various Freedom Park projects, including Isivivane (the symbolic final resting place for South Africa’s fallen heroes), //hapo (telling the South African story of liberation and the triumph of the human spirit over three billion years), and Isikhumbuto (a place of remembrance, a gathering space at the top of a hill surrounded by the wall of names, sanctuary, gallery of leaders, and the Moshate).

His work engages the African landscape, incorporating indigenous knowledge and ritual to respond to and enhance the emerging African condition. 

Becoming conscious

In his presentation, Morojele explained his journey as an architect. As a student at UCT, he said he felt invisible because of the kind of architecture they were talking about; mostly architecture of the Western world. He elaborated on this point in his lecture, explaining about becoming conscious. 

“It took me back to the origins of humankind. I found it interesting to consider what the architecture at our origins was, and what the environment was in which we first became conscious of ourselves. It has been said that becoming conscious was the beginning of spirituality and art. The idea of origins interested me, and also how we as humans became conscious of ourselves and the space around us, until we achieve the state where we actually create these spaces for our own use,” he said.

As we evolved and became more conscious, we not only found objects, but placed objects in ways that commemorate our unity and spirituality, signifying society coming together to build something collectively. 

Symbiotic relationship with the environment

For Morojele, animism – the belief that inanimate objects have internal and distinct spiritual essences – also played a role in his designs. “It allows us to have a symbiotic relationship with our environment, as opposed to one where we exercise dominion over all things. Animism locates us in the environment as part of it rather than as outside observers of the environment.” 

The Kigutu International Academy, located on the Village Health Works Campus 100 km south of Bujumbura in Burundi and nestled in lush mountains overlooking the beautiful Lake Tanganyika, is an example of where he places humans close to the environment. Here he essentialises the architecture. This project, with its open spaces, also brought about the question of walls. Do they unite or do they divide?

Morojele remarked that architecture takes lessons from landscapes by giving shelter, security, and prospects of freedom. 

Re-establishing what it means to be human

His goal was to plant an idea in the minds of the architects who attended the lecture. Given where we are headed in the world, we need to re-establish what it means to be human; it is only when we recognised the humanity in all of us that we can begin to use architecture to unite societies. 

In order to do this, our focus needs to be less intellectual and more about how we as biological beings behave in environments; for example, do people feel alienated or do they belong in our spaces?

“These are the important things, I think, our architects need to talk about in the future,” he concluded his lecture. 

• Examples of Morojele’s work, including drawings and designs, can be viewed at the Oliewenhuis Art Museum.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept