Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2022 | Story Leonie Bolleurs | Photo Supplied
Mpeti Morojele and Prof Jonathan Noble
Mpeti Morojele and Prof Jonathan Noble, Head of the UFS Department of Architecture, at the 33rd Sophia Gray Laureate exhibition at the Oliewenhuis Art Museum.

The Department of Architecture at the University of the Free State (UFS) this year hosted the first entirely face-to-face Sophia Gray lecture since the COVID-19 pandemic.

Talking about Changing Landscapes, Practice and Pedagogy, Mpeti Morojele presented the Sophia Gray lecture – the biggest and most prestigious architectural lecture of its kind in South Africa – as the 33rd Sophia Gray laureate. 

Hailing from the mountain kingdom of Lesotho, Morojele established his design practice, the award-winning MMA Design Studio in Johannesburg, in 1995.

Local and international recognition

He is recognised for his work locally and internationally. Some of his projects include the South African Embassy in Addis Ababa, Ethiopia, the South African Embassy in Berlin, Germany, the Maropeng Cradle of Humankind World Heritage Site, as well as various Freedom Park projects, including Isivivane (the symbolic final resting place for South Africa’s fallen heroes), //hapo (telling the South African story of liberation and the triumph of the human spirit over three billion years), and Isikhumbuto (a place of remembrance, a gathering space at the top of a hill surrounded by the wall of names, sanctuary, gallery of leaders, and the Moshate).

His work engages the African landscape, incorporating indigenous knowledge and ritual to respond to and enhance the emerging African condition. 

Becoming conscious

In his presentation, Morojele explained his journey as an architect. As a student at UCT, he said he felt invisible because of the kind of architecture they were talking about; mostly architecture of the Western world. He elaborated on this point in his lecture, explaining about becoming conscious. 

“It took me back to the origins of humankind. I found it interesting to consider what the architecture at our origins was, and what the environment was in which we first became conscious of ourselves. It has been said that becoming conscious was the beginning of spirituality and art. The idea of origins interested me, and also how we as humans became conscious of ourselves and the space around us, until we achieve the state where we actually create these spaces for our own use,” he said.

As we evolved and became more conscious, we not only found objects, but placed objects in ways that commemorate our unity and spirituality, signifying society coming together to build something collectively. 

Symbiotic relationship with the environment

For Morojele, animism – the belief that inanimate objects have internal and distinct spiritual essences – also played a role in his designs. “It allows us to have a symbiotic relationship with our environment, as opposed to one where we exercise dominion over all things. Animism locates us in the environment as part of it rather than as outside observers of the environment.” 

The Kigutu International Academy, located on the Village Health Works Campus 100 km south of Bujumbura in Burundi and nestled in lush mountains overlooking the beautiful Lake Tanganyika, is an example of where he places humans close to the environment. Here he essentialises the architecture. This project, with its open spaces, also brought about the question of walls. Do they unite or do they divide?

Morojele remarked that architecture takes lessons from landscapes by giving shelter, security, and prospects of freedom. 

Re-establishing what it means to be human

His goal was to plant an idea in the minds of the architects who attended the lecture. Given where we are headed in the world, we need to re-establish what it means to be human; it is only when we recognised the humanity in all of us that we can begin to use architecture to unite societies. 

In order to do this, our focus needs to be less intellectual and more about how we as biological beings behave in environments; for example, do people feel alienated or do they belong in our spaces?

“These are the important things, I think, our architects need to talk about in the future,” he concluded his lecture. 

• Examples of Morojele’s work, including drawings and designs, can be viewed at the Oliewenhuis Art Museum.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept