Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2022 | Story Leonie Bolleurs | Photo Supplied
Mpeti Morojele and Prof Jonathan Noble
Mpeti Morojele and Prof Jonathan Noble, Head of the UFS Department of Architecture, at the 33rd Sophia Gray Laureate exhibition at the Oliewenhuis Art Museum.

The Department of Architecture at the University of the Free State (UFS) this year hosted the first entirely face-to-face Sophia Gray lecture since the COVID-19 pandemic.

Talking about Changing Landscapes, Practice and Pedagogy, Mpeti Morojele presented the Sophia Gray lecture – the biggest and most prestigious architectural lecture of its kind in South Africa – as the 33rd Sophia Gray laureate. 

Hailing from the mountain kingdom of Lesotho, Morojele established his design practice, the award-winning MMA Design Studio in Johannesburg, in 1995.

Local and international recognition

He is recognised for his work locally and internationally. Some of his projects include the South African Embassy in Addis Ababa, Ethiopia, the South African Embassy in Berlin, Germany, the Maropeng Cradle of Humankind World Heritage Site, as well as various Freedom Park projects, including Isivivane (the symbolic final resting place for South Africa’s fallen heroes), //hapo (telling the South African story of liberation and the triumph of the human spirit over three billion years), and Isikhumbuto (a place of remembrance, a gathering space at the top of a hill surrounded by the wall of names, sanctuary, gallery of leaders, and the Moshate).

His work engages the African landscape, incorporating indigenous knowledge and ritual to respond to and enhance the emerging African condition. 

Becoming conscious

In his presentation, Morojele explained his journey as an architect. As a student at UCT, he said he felt invisible because of the kind of architecture they were talking about; mostly architecture of the Western world. He elaborated on this point in his lecture, explaining about becoming conscious. 

“It took me back to the origins of humankind. I found it interesting to consider what the architecture at our origins was, and what the environment was in which we first became conscious of ourselves. It has been said that becoming conscious was the beginning of spirituality and art. The idea of origins interested me, and also how we as humans became conscious of ourselves and the space around us, until we achieve the state where we actually create these spaces for our own use,” he said.

As we evolved and became more conscious, we not only found objects, but placed objects in ways that commemorate our unity and spirituality, signifying society coming together to build something collectively. 

Symbiotic relationship with the environment

For Morojele, animism – the belief that inanimate objects have internal and distinct spiritual essences – also played a role in his designs. “It allows us to have a symbiotic relationship with our environment, as opposed to one where we exercise dominion over all things. Animism locates us in the environment as part of it rather than as outside observers of the environment.” 

The Kigutu International Academy, located on the Village Health Works Campus 100 km south of Bujumbura in Burundi and nestled in lush mountains overlooking the beautiful Lake Tanganyika, is an example of where he places humans close to the environment. Here he essentialises the architecture. This project, with its open spaces, also brought about the question of walls. Do they unite or do they divide?

Morojele remarked that architecture takes lessons from landscapes by giving shelter, security, and prospects of freedom. 

Re-establishing what it means to be human

His goal was to plant an idea in the minds of the architects who attended the lecture. Given where we are headed in the world, we need to re-establish what it means to be human; it is only when we recognised the humanity in all of us that we can begin to use architecture to unite societies. 

In order to do this, our focus needs to be less intellectual and more about how we as biological beings behave in environments; for example, do people feel alienated or do they belong in our spaces?

“These are the important things, I think, our architects need to talk about in the future,” he concluded his lecture. 

• Examples of Morojele’s work, including drawings and designs, can be viewed at the Oliewenhuis Art Museum.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept