Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 August 2022 | Story Edzani Nephalela and Coreen Steenkamp | Photo Francois van Vuuren
Academic Leadership Programme
The new cohort of the Academic Leadership Programme.

Educational leaders serve a significant administrative, management, and leadership function in higher education. A departmental chair’s role differs fundamentally from other leadership contexts, based on the momentous transition from being an academic by profession to providing leadership at departmental level.
The Academic Leadership Programme (APL) was launched by the University of the Free State (UFS) Centre for Teaching and Learning (CTL) to equip academics for various managerial positions. Faculty deans propose candidates for this programme; the second cohort has been chosen as the first is nearing completion. 
The first workshop commenced with an engagement with the Rector and Vice-Chancellor of the UFS, Prof Francis Petersen, and the Vice-Rector: Academic, Dr Engela van Staden, who both shared strategic academic leadership perspectives during the orientation and welcoming of the APL. 
Such reflections highlighted the expectations of being an educator, the complexity, and the critical role of departmental chairs within higher education institutions. Academic leaders are thus expected to establish firm leadership within their departments, facilitate intellectual development, manage administrative duties, and strive toward resilient learning and teaching environments. 
“The position of departmental chairs remains critical for any higher education institution, as they provide leadership in advancing the discipline, teaching students, producing quality graduates, and serving the professional community,” said Prof Francois Strydom, Senior Director: Centre for Teaching and Learning.
Research confirms that most academics succeed in these roles without formal leadership training, yet the expectation of developing or having certain leadership qualities or management competencies must fulfil the various functions of such a position. 


News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept