Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 August 2022 | Story NONSINDISO QWABE | Photo NONSINDISO QWABE
Mpho Twala
Cultivating the land-Mpho Twala.

The Bachelor of Community Development qualification offered on the Qwaqwa Campus develops young professionals who are able to work collaboratively with the community to come up with initiatives that build resilience and sustainability. Before obtaining their qualifications, students are required to identify community needs and to come up with viable ways to eradicate these.

It was during this period that Mpho Twala, a recent CommDev graduate, identified a once-thriving community vegetable garden that had been abandoned and subsequently stripped over the years. Further research led her to realise that the soil was still very fertile, and with a bit of work, could once again be revived to become an income-generating business. She received her qualification during the April graduations on the Qwaqwa Campus, but she did not stop there.

Bringing change to the community through vegetable farming

Twala, with no agricultural background, approached the locals for permission to revive the 1-ha garden into a community-owned vegetable garden. “The land has been uncultivated for more than a decade, and after conducting a needs analysis, I didn’t want to leave it like that, because I saw that if I worked with young people, this would help with the high unemployment rate among the youth in this area,” Twala said.

She says she was driven by bringing about change in her community, which she believes was inspired by her studies.
“I’ve always wanted to do something in my community, and CommDev taught me to see opportunities instead of challenges.”

The vegetable garden currently has 17 employees, 10 of whom are under the age of 35. They are currently harvesting cabbages, various forms of spinach, and white onion – all organic – for home consumption and community purchasing. They also occasionally sell to hawkers around Qwaqwa.

Twala dreams of expanding the garden, adding more crops, and ultimately reaching commercial level. “We are currently classified under subsistence farming – farming for home consumption and selling the surplus so that the project can remain operational. But with the right funding and support, we can grow bigger and better.”

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept