Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 August 2022 | Story NONSINDISO QWABE | Photo SUPPLIED
The erudite watchmaker, Jabulani Mabuza.

At a time when it is becoming fashionable for high-tech smartwatches and fitness gadgets to adorn your wrist, there will always be room for a classic timepiece. Wristwatches in particular tell a different story to people of all social classes, and for Qwaqwa student Jabulani Mabuza, the process of making different watches to suit different tastes is what excites him the most.

Mabuza is in his final year of a BCom General Management degree.  In January 2020, he acted on his curiosity about the process of assembling a watch, and subsequently registered his watch business, Honour Watches, in January 2021.
Since then, he has steadily honed his craft, learning more about the art of watches. He recently made it through to the central regional rounds of the Entrepreneurship Development in Higher Education (EDHE) competition in the Existing Businesses category for studentpreneurs. 

On the pursuit of mastering the art of watchmaking

Horology is the study and measurement of time. It is the process of allowing yourself the time and patience required to master the art of building a watch from scratch, and Mabuza said he enjoyed the intricacies of the watchmaking process. “What I enjoy about horology is learning the deeper technicalities of the art, the whole process – from understanding basic astronomy and how planets move in our solar system, to sort of emulating that in a watch mechanism. The working of metals transformed into watch components that actually tell time, is what I enjoy most and what I am investing in so that I can master it one day,” he said.

As a BCom student, he said his studies have largely influenced his business journey, as it helps him understand the structure of his business professionally. “It assists me with the business administration and management of Honour, and the rest is inspired by my creativity and passion for what time means to human beings.”

Mabuza said South Africa does not have a watchmaking plant as yet, so all the components for his watches are currently imported from Japan and Switzerland. He hopes to one day have his own production plant that will produce watches from scratch, in order to teach more people this skill and to create jobs, for which there is always a need. Currently, he studies the watch components to learn which movement best complements which type of hand and casing, in order to assemble them according to the designs he likes. 

“I enjoy the pursuit of creating a mechanical auto-magnetic watch for international travellers that will automatically adjust to different time zones as they travel. These horological pursuits are what I enjoy the most, believe in, and am passionate about.”

The regional rounds will be held on the UFS Bloemfontein Campus from 19 to 23 September 2022.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept