Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 August 2022 | Story NONSINDISO QWABE | Photo SUPPLIED
The erudite watchmaker, Jabulani Mabuza.

At a time when it is becoming fashionable for high-tech smartwatches and fitness gadgets to adorn your wrist, there will always be room for a classic timepiece. Wristwatches in particular tell a different story to people of all social classes, and for Qwaqwa student Jabulani Mabuza, the process of making different watches to suit different tastes is what excites him the most.

Mabuza is in his final year of a BCom General Management degree.  In January 2020, he acted on his curiosity about the process of assembling a watch, and subsequently registered his watch business, Honour Watches, in January 2021.
Since then, he has steadily honed his craft, learning more about the art of watches. He recently made it through to the central regional rounds of the Entrepreneurship Development in Higher Education (EDHE) competition in the Existing Businesses category for studentpreneurs. 

On the pursuit of mastering the art of watchmaking

Horology is the study and measurement of time. It is the process of allowing yourself the time and patience required to master the art of building a watch from scratch, and Mabuza said he enjoyed the intricacies of the watchmaking process. “What I enjoy about horology is learning the deeper technicalities of the art, the whole process – from understanding basic astronomy and how planets move in our solar system, to sort of emulating that in a watch mechanism. The working of metals transformed into watch components that actually tell time, is what I enjoy most and what I am investing in so that I can master it one day,” he said.

As a BCom student, he said his studies have largely influenced his business journey, as it helps him understand the structure of his business professionally. “It assists me with the business administration and management of Honour, and the rest is inspired by my creativity and passion for what time means to human beings.”

Mabuza said South Africa does not have a watchmaking plant as yet, so all the components for his watches are currently imported from Japan and Switzerland. He hopes to one day have his own production plant that will produce watches from scratch, in order to teach more people this skill and to create jobs, for which there is always a need. Currently, he studies the watch components to learn which movement best complements which type of hand and casing, in order to assemble them according to the designs he likes. 

“I enjoy the pursuit of creating a mechanical auto-magnetic watch for international travellers that will automatically adjust to different time zones as they travel. These horological pursuits are what I enjoy the most, believe in, and am passionate about.”

The regional rounds will be held on the UFS Bloemfontein Campus from 19 to 23 September 2022.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept