Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 August 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Alistair Naidoo, second-year master’s student in Conservation Genetics and full-time technician in the Department of Genetics; Prof Paul Grobler, Head of the Department of Genetics; Prof Gordon Luikart; and Hannah Janse van Vuuren, third-year master’s student in Conservation Genetics.

It is an important and exciting time to be doing research in conservation genetics. This is according to Prof Gordon Luikart, Professor of Conservation Ecology and Genetics at the Flathead Lake Bio Station at the University of Montana in the United States. 

Prof Luikart, whose primary research focus is the application of genetics to the conservation of natural and managed populations, recently delivered a lecture, The Expanding Role of Genetics/omics in Wildlife Research and Conservation, on the Bloemfontein Campus of the University of the Free State (UFS). The lecture, hosted by the Department of Genetics, was attended by a group of students and lecturers in conservation and a number of related fields. 

He is one of the leading scientists in the field of conservation genetics, including integration of genomics in conservation projects. He is also co-author of the textbook Conservation and the Genomics of populations – the current prescribed textbook for GENE3744.

Species threatened with extinction

In 2008, the International Union for Conservation of Nature (IUCN) stated that approximately 10-20% of all vertebrate and plant species are threatened with extinction over the next few decades. In 1984, American biologist Edward O Wilson also said that it will take millions of years to correct the ongoing loss of genetics and species diversity caused by the destruction of natural habitats. “This is the folly our descendants are least likely to forgive us.”

Prof Luikart is of the opinion that genetics has enormous potential to help manage wildlife and prevent extirpation. “My research works to realise this potential and help wildlife managers conserve populations and ecosystems,” he says. 

Conservation managers and biologists have understood the risks of inbreeding for more than 100 years. In his lecture, one of the aspects of genetic conservation he focused on, was the negative effects of inbreeding and how this can be reversed using genetic rescue. 

With the genetic rescue study, they found that the gene flow into recently isolated populations can increase individual fitness and population growth. He proposed that conservation managers should consider genetic principles and rescue as practical and important tools. 

Prof Luikart also provided a list of information that can be retrieved from molecular genetic data to help conservation managers. This includes intel on census and effective population size, gene flow and dispersal, local adaptation and selection, forensics, genetic identification and law enforcement, and disease ecology and transmission. 

Non-invasive genetic monitoring

In terms of detecting gene flow, he focused on a study about non-invasive genetic monitoring that was conducted in the Yellowstone Park. Prof Luikart and a group of students collected the shed hair and faeces of the grizzly bear, obtained from trees and hair traps, which were used as a source of DNA. 

They established, for instance, that inbreeding depression is more common and stronger than previously thought in natural populations. Genetic monitoring, using non-invasive methods as described, has been found to be an effective tool that conservation managers should consider for detecting inbreeding and loss of genome-wide variation.

His research on the bighorn sheep, the alpine ibex, and the black bear informed most of the findings he discussed during his lecture.

News Archive

Little ‘Devil’s Worm’ on Top 10 New Species list
2012-05-29

 

Halicephalobus mephisto (Devil’s Worm)
Photo: Supplied
29 May 2012

A minuscule little worm found and researched with the assistance of researchers at the university has made it onto the list of Top 10 New Species of the world. The list was published by the International Institute for Species Exploration (IISE) at Arizona State University and a committee of scientists from around the world. It lists the top ten new species described in 2011.

An article on the new worm species appeared in the authoritative journal Nature in June 2011.
 
Prof. Esta van Heerden, leader of the university’s research team, says, “In our wildest dreams, we could not have imagined that we would get so much reaction from the worm’s discovery. We had to do so many checks and balances to convince Nature that the worm could survive in the old and warm water. We were very excited when the article was accepted but the media reaction was unbelievable.”
 
The tiny nematode, Halicephalobus mephisto (Devil’s Worm) of about 0,5 mm in length, is the deepest-living terrestrial multi-cellular organism on earth. It was discovered in the Beatrix gold mine near Welkom at a depth of 1,3 km.
 
The IISE says in a statement the species is remarkable for surviving immense underground pressure as well as high temperatures. The borehole water where this species lives has not been in contact with the earth’s atmosphere for the last 4 000 to 6 000 years.  
 
This top-10 list includes a sneezing monkey; a beautiful, but venomous jellyfish; a fungus named after a popular TV cartoon character; a night-blooming orchid; an ancient walking cactus creature; and a tiny wasp. A vibrant poppy, a giant millipede and a blue tarantula also made it onto the list.
 
The international selection committee made its choice from more than 200 nominations. They looked for species that captured the attention because they were unusual or because they had bizarre traits. Some of the new species have interesting names.
 
Prof. Van Heerden says, “We are very thankful for the exposure that the university gets as a result of the inclusion on the list and we enjoy the international cooperation immensely.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept