Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 August 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Alistair Naidoo, second-year master’s student in Conservation Genetics and full-time technician in the Department of Genetics; Prof Paul Grobler, Head of the Department of Genetics; Prof Gordon Luikart; and Hannah Janse van Vuuren, third-year master’s student in Conservation Genetics.

It is an important and exciting time to be doing research in conservation genetics. This is according to Prof Gordon Luikart, Professor of Conservation Ecology and Genetics at the Flathead Lake Bio Station at the University of Montana in the United States. 

Prof Luikart, whose primary research focus is the application of genetics to the conservation of natural and managed populations, recently delivered a lecture, The Expanding Role of Genetics/omics in Wildlife Research and Conservation, on the Bloemfontein Campus of the University of the Free State (UFS). The lecture, hosted by the Department of Genetics, was attended by a group of students and lecturers in conservation and a number of related fields. 

He is one of the leading scientists in the field of conservation genetics, including integration of genomics in conservation projects. He is also co-author of the textbook Conservation and the Genomics of populations – the current prescribed textbook for GENE3744.

Species threatened with extinction

In 2008, the International Union for Conservation of Nature (IUCN) stated that approximately 10-20% of all vertebrate and plant species are threatened with extinction over the next few decades. In 1984, American biologist Edward O Wilson also said that it will take millions of years to correct the ongoing loss of genetics and species diversity caused by the destruction of natural habitats. “This is the folly our descendants are least likely to forgive us.”

Prof Luikart is of the opinion that genetics has enormous potential to help manage wildlife and prevent extirpation. “My research works to realise this potential and help wildlife managers conserve populations and ecosystems,” he says. 

Conservation managers and biologists have understood the risks of inbreeding for more than 100 years. In his lecture, one of the aspects of genetic conservation he focused on, was the negative effects of inbreeding and how this can be reversed using genetic rescue. 

With the genetic rescue study, they found that the gene flow into recently isolated populations can increase individual fitness and population growth. He proposed that conservation managers should consider genetic principles and rescue as practical and important tools. 

Prof Luikart also provided a list of information that can be retrieved from molecular genetic data to help conservation managers. This includes intel on census and effective population size, gene flow and dispersal, local adaptation and selection, forensics, genetic identification and law enforcement, and disease ecology and transmission. 

Non-invasive genetic monitoring

In terms of detecting gene flow, he focused on a study about non-invasive genetic monitoring that was conducted in the Yellowstone Park. Prof Luikart and a group of students collected the shed hair and faeces of the grizzly bear, obtained from trees and hair traps, which were used as a source of DNA. 

They established, for instance, that inbreeding depression is more common and stronger than previously thought in natural populations. Genetic monitoring, using non-invasive methods as described, has been found to be an effective tool that conservation managers should consider for detecting inbreeding and loss of genome-wide variation.

His research on the bighorn sheep, the alpine ibex, and the black bear informed most of the findings he discussed during his lecture.

News Archive

Study shows that even cheating monkeys alter their behaviour to avoid detection and punishment
2013-03-12

 

Dr Le Roux sharing a moment with the geladas (Theropithecus gelada).
Photo: Supplied
11 March 2013

A recent article headed by Dr Aliza le Roux from the University of the Free State Qwaqwa Campus’ Department of Zoology and Entomology, asserts that cheating and deception is not only a human phenomenon - it is also found in non-human animals.

“Our specific study investigated cheating and punishment in geladas. While human beings are known to deceive one another, and punish cheaters that get caught, it is actually very rare to find proof of this kind of behaviour in non-human animals,” said Dr Le Roux.

“We don't know if this is because humans are uniquely deceitful, or if it is just that animals deal with cheating differently. Our study was therefore the first to demonstrate that gelada males and females try to deceive their partners when they are cheating on them. This means they try to hide their unfaithful behaviour.” This is therefore the first investigation to document tactical deception in primates living in a natural environment.

“We also showed that the cuckolded males then punish the cheaters, but could not determine if the punishment actually caused cheaters to stop cheating,” said Dr Le Roux.

This on-going and long-term study continues to observe the population of wild geladas in the Simien Mountains National Park in Ethiopia. The study investigates primate hormones, cognition, genetics, social behaviour and conservation, and is done in collaboration with the Universities of Michigan and Pennsylvania.

The full version of the article can be accessed on (http://www.nature.com/ncomms/journal/v4/n2/full/ncomms2468.html).


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept