Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 August 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Alistair Naidoo, second-year master’s student in Conservation Genetics and full-time technician in the Department of Genetics; Prof Paul Grobler, Head of the Department of Genetics; Prof Gordon Luikart; and Hannah Janse van Vuuren, third-year master’s student in Conservation Genetics.

It is an important and exciting time to be doing research in conservation genetics. This is according to Prof Gordon Luikart, Professor of Conservation Ecology and Genetics at the Flathead Lake Bio Station at the University of Montana in the United States. 

Prof Luikart, whose primary research focus is the application of genetics to the conservation of natural and managed populations, recently delivered a lecture, The Expanding Role of Genetics/omics in Wildlife Research and Conservation, on the Bloemfontein Campus of the University of the Free State (UFS). The lecture, hosted by the Department of Genetics, was attended by a group of students and lecturers in conservation and a number of related fields. 

He is one of the leading scientists in the field of conservation genetics, including integration of genomics in conservation projects. He is also co-author of the textbook Conservation and the Genomics of populations – the current prescribed textbook for GENE3744.

Species threatened with extinction

In 2008, the International Union for Conservation of Nature (IUCN) stated that approximately 10-20% of all vertebrate and plant species are threatened with extinction over the next few decades. In 1984, American biologist Edward O Wilson also said that it will take millions of years to correct the ongoing loss of genetics and species diversity caused by the destruction of natural habitats. “This is the folly our descendants are least likely to forgive us.”

Prof Luikart is of the opinion that genetics has enormous potential to help manage wildlife and prevent extirpation. “My research works to realise this potential and help wildlife managers conserve populations and ecosystems,” he says. 

Conservation managers and biologists have understood the risks of inbreeding for more than 100 years. In his lecture, one of the aspects of genetic conservation he focused on, was the negative effects of inbreeding and how this can be reversed using genetic rescue. 

With the genetic rescue study, they found that the gene flow into recently isolated populations can increase individual fitness and population growth. He proposed that conservation managers should consider genetic principles and rescue as practical and important tools. 

Prof Luikart also provided a list of information that can be retrieved from molecular genetic data to help conservation managers. This includes intel on census and effective population size, gene flow and dispersal, local adaptation and selection, forensics, genetic identification and law enforcement, and disease ecology and transmission. 

Non-invasive genetic monitoring

In terms of detecting gene flow, he focused on a study about non-invasive genetic monitoring that was conducted in the Yellowstone Park. Prof Luikart and a group of students collected the shed hair and faeces of the grizzly bear, obtained from trees and hair traps, which were used as a source of DNA. 

They established, for instance, that inbreeding depression is more common and stronger than previously thought in natural populations. Genetic monitoring, using non-invasive methods as described, has been found to be an effective tool that conservation managers should consider for detecting inbreeding and loss of genome-wide variation.

His research on the bighorn sheep, the alpine ibex, and the black bear informed most of the findings he discussed during his lecture.

News Archive

UFS plays leading role in implementing curriculum for deaf learners
2013-08-15

 

Minister Angie Motshekga (front left) joined by members of the South African Sign Language task team. Behind Minister Motshekga’s shoulder is Dr Philemon Akach.
15 August 2013

South African Sign Language (SASL) will soon be offered as a school subject to Grade 0–12 learners in all 42 schools for the deaf in South Africa. Our Department of South African Sign Language had a role to play in this significant development that will empower deaf learners in South Africa and the continent.

Dr Philemon Akach, Head of the Department of South African Sign Language at the UFS, is part of the nine-member task team that recently handed over the SASL curriculum to the Minister of Basic Education, Angie Motshekga. The curriculum will be offered as a home language in all schools from 2014 and Grade 12 learners will be able to write it as a final-year examination subject.

Dr Akach – a member of the task team since 2009 – helped to coordinate the development of the curriculum.

The implementation of the curriculum means a lot to the Department of South African Sign Language, Dr Akach says. “We have championed the linguistic needs of the deaf community ever since we became the first university to offer SASL as an academic course, not only in South Africa, but also on the continent.”

Dr Akach says most Education students are already taking SASL as subject in his department, equipping them as prospective teachers to make implementation of the curriculum a smooth one. “Given our expertise, we will train teachers in the field and be involved in the setting and moderation of exam papers. The University of the Free State is no doubt a leader in this field.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept