Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 August 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Alistair Naidoo, second-year master’s student in Conservation Genetics and full-time technician in the Department of Genetics; Prof Paul Grobler, Head of the Department of Genetics; Prof Gordon Luikart; and Hannah Janse van Vuuren, third-year master’s student in Conservation Genetics.

It is an important and exciting time to be doing research in conservation genetics. This is according to Prof Gordon Luikart, Professor of Conservation Ecology and Genetics at the Flathead Lake Bio Station at the University of Montana in the United States. 

Prof Luikart, whose primary research focus is the application of genetics to the conservation of natural and managed populations, recently delivered a lecture, The Expanding Role of Genetics/omics in Wildlife Research and Conservation, on the Bloemfontein Campus of the University of the Free State (UFS). The lecture, hosted by the Department of Genetics, was attended by a group of students and lecturers in conservation and a number of related fields. 

He is one of the leading scientists in the field of conservation genetics, including integration of genomics in conservation projects. He is also co-author of the textbook Conservation and the Genomics of populations – the current prescribed textbook for GENE3744.

Species threatened with extinction

In 2008, the International Union for Conservation of Nature (IUCN) stated that approximately 10-20% of all vertebrate and plant species are threatened with extinction over the next few decades. In 1984, American biologist Edward O Wilson also said that it will take millions of years to correct the ongoing loss of genetics and species diversity caused by the destruction of natural habitats. “This is the folly our descendants are least likely to forgive us.”

Prof Luikart is of the opinion that genetics has enormous potential to help manage wildlife and prevent extirpation. “My research works to realise this potential and help wildlife managers conserve populations and ecosystems,” he says. 

Conservation managers and biologists have understood the risks of inbreeding for more than 100 years. In his lecture, one of the aspects of genetic conservation he focused on, was the negative effects of inbreeding and how this can be reversed using genetic rescue. 

With the genetic rescue study, they found that the gene flow into recently isolated populations can increase individual fitness and population growth. He proposed that conservation managers should consider genetic principles and rescue as practical and important tools. 

Prof Luikart also provided a list of information that can be retrieved from molecular genetic data to help conservation managers. This includes intel on census and effective population size, gene flow and dispersal, local adaptation and selection, forensics, genetic identification and law enforcement, and disease ecology and transmission. 

Non-invasive genetic monitoring

In terms of detecting gene flow, he focused on a study about non-invasive genetic monitoring that was conducted in the Yellowstone Park. Prof Luikart and a group of students collected the shed hair and faeces of the grizzly bear, obtained from trees and hair traps, which were used as a source of DNA. 

They established, for instance, that inbreeding depression is more common and stronger than previously thought in natural populations. Genetic monitoring, using non-invasive methods as described, has been found to be an effective tool that conservation managers should consider for detecting inbreeding and loss of genome-wide variation.

His research on the bighorn sheep, the alpine ibex, and the black bear informed most of the findings he discussed during his lecture.

News Archive

SASOL TRAC laboratory launched at UFS Qwaqwa Campus
2006-05-08

Some of the guests attending the launch of the Sasol TRAC Laboratory at the University of the Free State's (UFS) Qwaqwa Campus were from the left Prof Peter Mbati (Principal of the Qwaqwa Campus), Mrs Zimbini Zwane ( Communications Manager of Sasol Infrachem), Prof Gerhardt  de Klerk (Dean : UFS Faculty of the Humanities), Prof Fred Hugo
 Director of TRAC SA) and Prof Jack van der Linde (Director of RIEP at the UFS).

SASOL TRAC laboratory launched at UFS Qwaqwa Campus

The Research Institute for Education Planning (RIEP) of the University of the Free State (UFS) today unveiled the Sasol TRAC Laboratory at its Qwaqwa campus.

The laboratory will be used to help grade 10, 11 and 12 learners and educators from the Qwaqwa region to conduct the experiments from the physical sciences outcome-based curriculum.

“The Sasol TRAC Laboratory introduces learners not only to the latest technology used by engineers and other scientists in practice but also to stimulate the learner’s interest in the field of science in such a way that more of them will enter into science related careers,” says Mr Cobus van Breda, Co-ordinator of the TRAC Free State Regional Centre.

According to Mr van Breda the newly established Sasol TRAC Laboratory will enable RIEP to train learners and their educators in Physical Sciences.  The laboratory will consist of six work stations equipped with computers and electronic sensors.

“Learners from the Qwaqwa region will visit the Sasol TRAC Laboratory on regular basis to conduct experiments based on the curriculum.  Data will be collected with electronic apparatus and presented as graphs on the computer so that results can be analysed and interpreted,” says Mr van Breda.

“There is a serious shortage of suitable qualified teachers in maths and science in the Qwaqwa region.  Many schools in the region are not yet part of the RIEP project and are in dire need of assistance.  A large number of these schools are in remote areas not reached regularly by intervention programmes,” says Prof Peter Mbati, Principal of the UFS Qwaqwa Campus.

“The establishment of the Sasol TRAC Laboratory at the Qwaqwa Campus provides us the opportunity to engage with our community and assist in the development and training of these vital education subjects.  We are pleased that Sasol agreed to fund the project,” says Prof Mbati.

Students from the Qwaqwa Campus will also benefit from the TRAC programme.   “Some promising students will also undergo further training and become assistants for the TRAC programme,” says Prof Mbati. 

“Nurturing science and mathematical skills is of great importance in growing our national economy. Annually, Sasol invests more than R50 million in supporting mathematical and science education in South Africa. Our primary aim is to increase the number of learners gaining access to tertiary education in the science fields. Therefore, our Corporate Social Investment (CSI) education interventions at secondary school level focus on educator development and direct learner interventions such as the Sasol TRAC Laboratory,” explains Ms Pamilla Mudhray, CSI and SHARP manager at Sasol.

According to Ms Mudhray the implementation of the National Curriculum Statement for physical sciences in the further education and training (FET) phase from 2006, under resourced schools will need greater access to the tools and equipment necessary to teach the syllabus and fulfil the ideals of the curriculum.

TRAC South Africa is a national non-profit programme focused on supporting and expanding science, mathematics and technology education in secondary schools. The programme was first introduced to South Africa in 1994. In 2005, RIEP established the TRAC Free State regional centre on the UFS Main Campus in Bloemfontein.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
5 May 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept