Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 August 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Alistair Naidoo, second-year master’s student in Conservation Genetics and full-time technician in the Department of Genetics; Prof Paul Grobler, Head of the Department of Genetics; Prof Gordon Luikart; and Hannah Janse van Vuuren, third-year master’s student in Conservation Genetics.

It is an important and exciting time to be doing research in conservation genetics. This is according to Prof Gordon Luikart, Professor of Conservation Ecology and Genetics at the Flathead Lake Bio Station at the University of Montana in the United States. 

Prof Luikart, whose primary research focus is the application of genetics to the conservation of natural and managed populations, recently delivered a lecture, The Expanding Role of Genetics/omics in Wildlife Research and Conservation, on the Bloemfontein Campus of the University of the Free State (UFS). The lecture, hosted by the Department of Genetics, was attended by a group of students and lecturers in conservation and a number of related fields. 

He is one of the leading scientists in the field of conservation genetics, including integration of genomics in conservation projects. He is also co-author of the textbook Conservation and the Genomics of populations – the current prescribed textbook for GENE3744.

Species threatened with extinction

In 2008, the International Union for Conservation of Nature (IUCN) stated that approximately 10-20% of all vertebrate and plant species are threatened with extinction over the next few decades. In 1984, American biologist Edward O Wilson also said that it will take millions of years to correct the ongoing loss of genetics and species diversity caused by the destruction of natural habitats. “This is the folly our descendants are least likely to forgive us.”

Prof Luikart is of the opinion that genetics has enormous potential to help manage wildlife and prevent extirpation. “My research works to realise this potential and help wildlife managers conserve populations and ecosystems,” he says. 

Conservation managers and biologists have understood the risks of inbreeding for more than 100 years. In his lecture, one of the aspects of genetic conservation he focused on, was the negative effects of inbreeding and how this can be reversed using genetic rescue. 

With the genetic rescue study, they found that the gene flow into recently isolated populations can increase individual fitness and population growth. He proposed that conservation managers should consider genetic principles and rescue as practical and important tools. 

Prof Luikart also provided a list of information that can be retrieved from molecular genetic data to help conservation managers. This includes intel on census and effective population size, gene flow and dispersal, local adaptation and selection, forensics, genetic identification and law enforcement, and disease ecology and transmission. 

Non-invasive genetic monitoring

In terms of detecting gene flow, he focused on a study about non-invasive genetic monitoring that was conducted in the Yellowstone Park. Prof Luikart and a group of students collected the shed hair and faeces of the grizzly bear, obtained from trees and hair traps, which were used as a source of DNA. 

They established, for instance, that inbreeding depression is more common and stronger than previously thought in natural populations. Genetic monitoring, using non-invasive methods as described, has been found to be an effective tool that conservation managers should consider for detecting inbreeding and loss of genome-wide variation.

His research on the bighorn sheep, the alpine ibex, and the black bear informed most of the findings he discussed during his lecture.

News Archive

From peasant to president; from Samora Machel to Cahora Bassa
2015-03-25

Prof Barbara Isaacman and Prof Allen Isaacman
Photo: Renè-Jean van der Berg

When the plane crashed in Mbuzini, the entire country was submerged in a profound grieving.

This is how Prof Allen Isaacman, Regents Professor of History at the University of Minnesota, described the effect President Samora Machel’s death in 1986 had on Mozambique. In a public lecture, Prof Isaacman spoke about the man, Samora Machel, and the influences that shaped Machel’s life. The event, recently hosted by the UFS International Studies Group on the Bloemfontein Campus, was part of the Stanley Trapido Seminar Programme.

Samora Machel: from peasant to president
Born in 1933 into a peasant family, Machel was allowed to advance only to the third grade in school. “And yet,” Prof Isaacman said, “he became a very prominent local peasant intellectual and ultimately one of the most significant critics of Portuguese colonialism and colonial capitalism.” Machel had a great sense of human agency and firmly believed that one is not a mere victim of circumstances. “You were born into a world, but you can change it,” Prof Isaacman explained Machel’s conviction.

From herding cattle in Chokwe, to working as male nurse, Machel went on to become the leader of the Liberation Front of Mozambique (Frelimo) and ultimately the president of his country. To this day, not only does he “capture the imagination of the Mozambican people and South Africans, but is considered one the great leaders of that moment in African history,” Prof Isaacman concluded his lecture.

Displacement, and the Delusion of Development: Cahora Bassa and Its Legacies in Mozambique, 1965–2007
Later in the day, Profs Allen and Barbara Isaacman discussed their book: ‘Displacement, and the Delusion of Development: Cahora Bassa and Its Legacies in Mozambique, 1965–2007’ at the Archives for Contemporary Affairs. As authors of the book, they investigate the history and legacies of one of Africa's largest dams, Cahora Bassa, which was built in Mozambique by the Portuguese in the late 1960s and early 1970s.

The dam was constructed under conditions of war and inaugurated after independence by a government led by Frelimo. The dam has since operated continuously, although, for many years, much of its electricity was not exported or used because armed rebels had destroyed many high voltage power line pillars. Since the end of the armed conflict in 1992, power lines have been rebuilt, and Cahora Bassa has provided electricity again, primarily to South Africa, though increasingly to the national Mozambican grid as well.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept