Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 August 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Alistair Naidoo, second-year master’s student in Conservation Genetics and full-time technician in the Department of Genetics; Prof Paul Grobler, Head of the Department of Genetics; Prof Gordon Luikart; and Hannah Janse van Vuuren, third-year master’s student in Conservation Genetics.

It is an important and exciting time to be doing research in conservation genetics. This is according to Prof Gordon Luikart, Professor of Conservation Ecology and Genetics at the Flathead Lake Bio Station at the University of Montana in the United States. 

Prof Luikart, whose primary research focus is the application of genetics to the conservation of natural and managed populations, recently delivered a lecture, The Expanding Role of Genetics/omics in Wildlife Research and Conservation, on the Bloemfontein Campus of the University of the Free State (UFS). The lecture, hosted by the Department of Genetics, was attended by a group of students and lecturers in conservation and a number of related fields. 

He is one of the leading scientists in the field of conservation genetics, including integration of genomics in conservation projects. He is also co-author of the textbook Conservation and the Genomics of populations – the current prescribed textbook for GENE3744.

Species threatened with extinction

In 2008, the International Union for Conservation of Nature (IUCN) stated that approximately 10-20% of all vertebrate and plant species are threatened with extinction over the next few decades. In 1984, American biologist Edward O Wilson also said that it will take millions of years to correct the ongoing loss of genetics and species diversity caused by the destruction of natural habitats. “This is the folly our descendants are least likely to forgive us.”

Prof Luikart is of the opinion that genetics has enormous potential to help manage wildlife and prevent extirpation. “My research works to realise this potential and help wildlife managers conserve populations and ecosystems,” he says. 

Conservation managers and biologists have understood the risks of inbreeding for more than 100 years. In his lecture, one of the aspects of genetic conservation he focused on, was the negative effects of inbreeding and how this can be reversed using genetic rescue. 

With the genetic rescue study, they found that the gene flow into recently isolated populations can increase individual fitness and population growth. He proposed that conservation managers should consider genetic principles and rescue as practical and important tools. 

Prof Luikart also provided a list of information that can be retrieved from molecular genetic data to help conservation managers. This includes intel on census and effective population size, gene flow and dispersal, local adaptation and selection, forensics, genetic identification and law enforcement, and disease ecology and transmission. 

Non-invasive genetic monitoring

In terms of detecting gene flow, he focused on a study about non-invasive genetic monitoring that was conducted in the Yellowstone Park. Prof Luikart and a group of students collected the shed hair and faeces of the grizzly bear, obtained from trees and hair traps, which were used as a source of DNA. 

They established, for instance, that inbreeding depression is more common and stronger than previously thought in natural populations. Genetic monitoring, using non-invasive methods as described, has been found to be an effective tool that conservation managers should consider for detecting inbreeding and loss of genome-wide variation.

His research on the bighorn sheep, the alpine ibex, and the black bear informed most of the findings he discussed during his lecture.

News Archive

School of Medicine expands to provide quality tuition
2015-04-20

 

The School of Medicine at the University of the Free State (UFS) has recently extended various training platforms to provide continuous quality tuition to students.

Not only does the school boast a world-class dissection hall but now has plans for additional training facilities at two more hospitals.

The new dissection hall was completed in January 2015 with some final finishing touches that will be done shortly. The hall is newly built as the previous dissection hall has been used for undergraduate anatomy training since 1972.

Dr Sanet van Zyl, Senior Lecturer in the Department of Basic Medical Science, says owing to a prospective growth in the number of medical students as well as changing methods in teaching and learning, the need for a new dissection hall became evident to ensure that students get an optimal learning experience during dissection tuition.

“The new spacious dissection hall is equipped with special lighting and modern equipment for the training programme for second-year medical students. The hall is further equipped with modern sound and computer equipment. A unique camera system will allow students to follow dissection demonstrations on ten screens in the hall. Dissection demonstrations can also be recorded, enabling lecturers to put together new materials for teaching and learning.”

In addition to anatomy teaching for under- and postgraduate medical students, the Department of Basic Medical Science also offers anatomy teaching to under-graduate students from the School of Nursing, the School of Allied Health Professions as well as students from the Natural and Agricultural Sciences (such as students studying Forensic Science). The old dissection hall will still be used for the anatomy training of these students.

“The dissection programme for medical students is of critical importance, not only to acquire anatomical knowledge, but also for the development of critical skills and professionalism of our students. As already mentioned, these modern facilities will enable us to be at the forefront of current development in this field. This will benefit both present and future generations of medical students.”

At the same time, Prof Alan St. Clair Gibson, Head of the School of Medicine, announced that lecturing facilities are being developed at the Kimberley Hospital Complex. There are also plans for study facilities at the UFS’s Qwaqwa Campus and Bongani Hospital in Welkom. The UFS’s planning is also well underway for lecturing and residential facilities for students in Trompsburg, where students will receive training at the Trompsburg Hospital.

“We are very privileged to have these facilities and they will help us to provide world class training for students in the School of Medicine,” Prof St. Clair Gibson says.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept