Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 August 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Alistair Naidoo, second-year master’s student in Conservation Genetics and full-time technician in the Department of Genetics; Prof Paul Grobler, Head of the Department of Genetics; Prof Gordon Luikart; and Hannah Janse van Vuuren, third-year master’s student in Conservation Genetics.

It is an important and exciting time to be doing research in conservation genetics. This is according to Prof Gordon Luikart, Professor of Conservation Ecology and Genetics at the Flathead Lake Bio Station at the University of Montana in the United States. 

Prof Luikart, whose primary research focus is the application of genetics to the conservation of natural and managed populations, recently delivered a lecture, The Expanding Role of Genetics/omics in Wildlife Research and Conservation, on the Bloemfontein Campus of the University of the Free State (UFS). The lecture, hosted by the Department of Genetics, was attended by a group of students and lecturers in conservation and a number of related fields. 

He is one of the leading scientists in the field of conservation genetics, including integration of genomics in conservation projects. He is also co-author of the textbook Conservation and the Genomics of populations – the current prescribed textbook for GENE3744.

Species threatened with extinction

In 2008, the International Union for Conservation of Nature (IUCN) stated that approximately 10-20% of all vertebrate and plant species are threatened with extinction over the next few decades. In 1984, American biologist Edward O Wilson also said that it will take millions of years to correct the ongoing loss of genetics and species diversity caused by the destruction of natural habitats. “This is the folly our descendants are least likely to forgive us.”

Prof Luikart is of the opinion that genetics has enormous potential to help manage wildlife and prevent extirpation. “My research works to realise this potential and help wildlife managers conserve populations and ecosystems,” he says. 

Conservation managers and biologists have understood the risks of inbreeding for more than 100 years. In his lecture, one of the aspects of genetic conservation he focused on, was the negative effects of inbreeding and how this can be reversed using genetic rescue. 

With the genetic rescue study, they found that the gene flow into recently isolated populations can increase individual fitness and population growth. He proposed that conservation managers should consider genetic principles and rescue as practical and important tools. 

Prof Luikart also provided a list of information that can be retrieved from molecular genetic data to help conservation managers. This includes intel on census and effective population size, gene flow and dispersal, local adaptation and selection, forensics, genetic identification and law enforcement, and disease ecology and transmission. 

Non-invasive genetic monitoring

In terms of detecting gene flow, he focused on a study about non-invasive genetic monitoring that was conducted in the Yellowstone Park. Prof Luikart and a group of students collected the shed hair and faeces of the grizzly bear, obtained from trees and hair traps, which were used as a source of DNA. 

They established, for instance, that inbreeding depression is more common and stronger than previously thought in natural populations. Genetic monitoring, using non-invasive methods as described, has been found to be an effective tool that conservation managers should consider for detecting inbreeding and loss of genome-wide variation.

His research on the bighorn sheep, the alpine ibex, and the black bear informed most of the findings he discussed during his lecture.

News Archive

Colloquium probes solutions for student hunger
2015-08-03

While higher education is deemed necessary for future financial security, high tuition and accommodation fees, as well as increasing food prices, are forcing students to drop out of university.

Dr Louise van den Berg, Senior Lecturer and Researcher at the University of the Free State (UFS), says university campuses are not often associated with food insecurity, but, due to the increase in first-generation students and students of low-income households receiving tertiary education, student hunger at some of the country’s prominent campuses needs urgent intervention.

On 14 August 2015, the University of the Free State (UFS) will host the first higher education colloquium in the country, on food insecurity on university campuses.  Best practices will be shared, exploring the available research on student food insecurity at institutions of higher education. Programme of the colloquium.

A study by the UFS Department of Nutrition and Dietetics found that as many as 60% of students on our campuses were food-insecure, and experienced hunger. This study was the first of its kind in South Africa, and led to the No Student Hungry Bursary Programme (NSH) at the UFS. The level of severe food insecurity reported was much higher than that reported in Australia, New York, and Hawaii by the only other three studies that have been done.

“The UFS is not the only campus struggling with food insecurity,” say Dr Van den Bergh.

“The general misconception is that a student, having money for studies, should have money for food. Funders need to reassess bursaries, keeping issues such as food insecurity in mind, and not just focusing on tuition.”

Bursaries, especially government funding, became easily available to bridge the inequality gap in our country.

“Although bursaries pay for tuition, many students have no resources for food. Universities currently have a 50% drop-out rate currently, with many students dropping out due to poverty.”

 

What is NSH?

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept