Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 August 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Alistair Naidoo, second-year master’s student in Conservation Genetics and full-time technician in the Department of Genetics; Prof Paul Grobler, Head of the Department of Genetics; Prof Gordon Luikart; and Hannah Janse van Vuuren, third-year master’s student in Conservation Genetics.

It is an important and exciting time to be doing research in conservation genetics. This is according to Prof Gordon Luikart, Professor of Conservation Ecology and Genetics at the Flathead Lake Bio Station at the University of Montana in the United States. 

Prof Luikart, whose primary research focus is the application of genetics to the conservation of natural and managed populations, recently delivered a lecture, The Expanding Role of Genetics/omics in Wildlife Research and Conservation, on the Bloemfontein Campus of the University of the Free State (UFS). The lecture, hosted by the Department of Genetics, was attended by a group of students and lecturers in conservation and a number of related fields. 

He is one of the leading scientists in the field of conservation genetics, including integration of genomics in conservation projects. He is also co-author of the textbook Conservation and the Genomics of populations – the current prescribed textbook for GENE3744.

Species threatened with extinction

In 2008, the International Union for Conservation of Nature (IUCN) stated that approximately 10-20% of all vertebrate and plant species are threatened with extinction over the next few decades. In 1984, American biologist Edward O Wilson also said that it will take millions of years to correct the ongoing loss of genetics and species diversity caused by the destruction of natural habitats. “This is the folly our descendants are least likely to forgive us.”

Prof Luikart is of the opinion that genetics has enormous potential to help manage wildlife and prevent extirpation. “My research works to realise this potential and help wildlife managers conserve populations and ecosystems,” he says. 

Conservation managers and biologists have understood the risks of inbreeding for more than 100 years. In his lecture, one of the aspects of genetic conservation he focused on, was the negative effects of inbreeding and how this can be reversed using genetic rescue. 

With the genetic rescue study, they found that the gene flow into recently isolated populations can increase individual fitness and population growth. He proposed that conservation managers should consider genetic principles and rescue as practical and important tools. 

Prof Luikart also provided a list of information that can be retrieved from molecular genetic data to help conservation managers. This includes intel on census and effective population size, gene flow and dispersal, local adaptation and selection, forensics, genetic identification and law enforcement, and disease ecology and transmission. 

Non-invasive genetic monitoring

In terms of detecting gene flow, he focused on a study about non-invasive genetic monitoring that was conducted in the Yellowstone Park. Prof Luikart and a group of students collected the shed hair and faeces of the grizzly bear, obtained from trees and hair traps, which were used as a source of DNA. 

They established, for instance, that inbreeding depression is more common and stronger than previously thought in natural populations. Genetic monitoring, using non-invasive methods as described, has been found to be an effective tool that conservation managers should consider for detecting inbreeding and loss of genome-wide variation.

His research on the bighorn sheep, the alpine ibex, and the black bear informed most of the findings he discussed during his lecture.

News Archive

Neonatal Care Unit receives donation to expand capacity
2015-10-28

  

With the best care and technology available,
the survival rate of premature
babies is about 85%. The neonatal intensive
care unit at the Universitas hospital can now
expand its capacity thanks to a donation of
R1 million by the Discovery fund.
From the left is Prof André Venter.
Head: Department of Paediatrics and
Child Health at the UFS, and mrs Ruth Lewin,
Head: Corporate Sustainability at Discovery. 

The smallest people need the greatest care. This care is being provided by the neonatal unit in the Children’s Wing of the Universitas Hospital. This project of the University of the Free State (UFS), under the leadership of Prof Andre Venter, has led to several miracles regarding child health since its inception.

Now, thanks to a donation of R1 million rand from the Discovery fund, this unit can expand its capacity and treat more premature babies.

About 14% of babies in South Africa are born before the 37th week of pregnancy. These babies are born with a very low birth weight, and are in need of critical care. The neonatal intensive-care unit at Universitas Hospital is currently equipped to take care of about 14 premature babies at a time, from birth to discharge. However, because of the high incidence of premature births in the hospital’s service area, the unit needs about 45 beds.

The aim of the Children’s Wing Project is to expand the neonatal intensive-care unit in order to meet the demands of the hospital’s service area, which reaches as far as the Southern Cape. The Discovery Fund recently donated R1 million to the project, which will be used to expand the capacity of the neonatal intensive-care unit.

“With the best care and technology available, the survival rate of premature babies is about 85%. Without this, half of all premature babies would die,” says Prof Venter, Head: Department of Paediatrics and Child Health at the UFS.

“This is the reason why private and public partnerships, such as the one with Discovery, are essential to make specialised services available to the most vulnerable people. Discovery has made a significant contribution to the project without which we would not have been able to expand the capacity of the unit



We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept