Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 August 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Alistair Naidoo, second-year master’s student in Conservation Genetics and full-time technician in the Department of Genetics; Prof Paul Grobler, Head of the Department of Genetics; Prof Gordon Luikart; and Hannah Janse van Vuuren, third-year master’s student in Conservation Genetics.

It is an important and exciting time to be doing research in conservation genetics. This is according to Prof Gordon Luikart, Professor of Conservation Ecology and Genetics at the Flathead Lake Bio Station at the University of Montana in the United States. 

Prof Luikart, whose primary research focus is the application of genetics to the conservation of natural and managed populations, recently delivered a lecture, The Expanding Role of Genetics/omics in Wildlife Research and Conservation, on the Bloemfontein Campus of the University of the Free State (UFS). The lecture, hosted by the Department of Genetics, was attended by a group of students and lecturers in conservation and a number of related fields. 

He is one of the leading scientists in the field of conservation genetics, including integration of genomics in conservation projects. He is also co-author of the textbook Conservation and the Genomics of populations – the current prescribed textbook for GENE3744.

Species threatened with extinction

In 2008, the International Union for Conservation of Nature (IUCN) stated that approximately 10-20% of all vertebrate and plant species are threatened with extinction over the next few decades. In 1984, American biologist Edward O Wilson also said that it will take millions of years to correct the ongoing loss of genetics and species diversity caused by the destruction of natural habitats. “This is the folly our descendants are least likely to forgive us.”

Prof Luikart is of the opinion that genetics has enormous potential to help manage wildlife and prevent extirpation. “My research works to realise this potential and help wildlife managers conserve populations and ecosystems,” he says. 

Conservation managers and biologists have understood the risks of inbreeding for more than 100 years. In his lecture, one of the aspects of genetic conservation he focused on, was the negative effects of inbreeding and how this can be reversed using genetic rescue. 

With the genetic rescue study, they found that the gene flow into recently isolated populations can increase individual fitness and population growth. He proposed that conservation managers should consider genetic principles and rescue as practical and important tools. 

Prof Luikart also provided a list of information that can be retrieved from molecular genetic data to help conservation managers. This includes intel on census and effective population size, gene flow and dispersal, local adaptation and selection, forensics, genetic identification and law enforcement, and disease ecology and transmission. 

Non-invasive genetic monitoring

In terms of detecting gene flow, he focused on a study about non-invasive genetic monitoring that was conducted in the Yellowstone Park. Prof Luikart and a group of students collected the shed hair and faeces of the grizzly bear, obtained from trees and hair traps, which were used as a source of DNA. 

They established, for instance, that inbreeding depression is more common and stronger than previously thought in natural populations. Genetic monitoring, using non-invasive methods as described, has been found to be an effective tool that conservation managers should consider for detecting inbreeding and loss of genome-wide variation.

His research on the bighorn sheep, the alpine ibex, and the black bear informed most of the findings he discussed during his lecture.

News Archive

From music to theology: Stats Unit valuable in research process
2017-02-23

Description: Prof Robert Schall Tags: Prof Robert Schall

Prof Schall, head of the UFS Statistical Consultation Unit
Photo: Leonie Bolleurs

Whether it is analysing data on church attendance, climate change in the Northern Cape or injuries among elite female hockey players, the Statistical Consultation Unit at the University of the Free State (UFS) can assist researchers from the planning of research to publication therof.

Many students and researchers think that the time to consult a statistician is after their research data has been collected. According to Prof Robert Schall, head of the unit, the most significant contribution a statistician can make to a research project is often during its planning. Preferably all researchers should consult the unit early in the research process.

Statistical consultation service free for postgraduates

The consultation unit, established in 2014 in the Department of Mathematical Statistics and Actuarial Science, provides support to all UFS researchers. This service is rendered to postgraduate students at no charge.

“The unit can make a contribution throughout the research process, from the planning of the research project, through the analysis of research data, up to the publication of the findings. I have been involved in projects where, for example, a few very simple changes to the design of a questionnaire would have saved the researcher and the statistician a lot of trouble. It will be beneficial for researchers to have their questionnaires and study proposals (where relevant), reviewed by a statistician,” Prof Schall said.

“The unit can make a contribution
throughout the research process,
from the planning of the research
project, through the analysis of
research data, up to the publication
of the findings.”

Fascinating research topics deliver fascinating data
The professor assisted in a study for the Department of Soil, Crop and Climate Sciences to determine whether rainfall in the Northern Cape had changed over the past 90 years, potentially indicating climate change.

Other interesting projects he has worked on came from the Department of Exercise and Sport Sciences. “Who will not be fascinated by data sets on aspects of rugby, cricket or even netball? One significant finding was a predictor of injury in elite female hockey players. The PhD student identified a pre-season test which predicted the occurrence of an in-season injury with 100% specificity and 100% sensitivity. The finding was quite surprising, and, if the results can be replicated, obviously would be useful in the prevention of injuries,” he said.

This is, of course, not an exhaustive list of projects the unit has worked on. “Not in my wildest dreams would I have expected to be involved in projects coming from the Faculty of Theology, or from the Odeion School of Music,” Prof Schall said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept