Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2022 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Ted Kroon
Prof Ted Kroon from the Department of Physics recently delivered his inaugural lecture on the topic What’s the use of a rainbow on the UFS Bloemfontein Campus.

“A rainbow is a natural phenomenon, the result of the refraction and reflection of the sun’s rays in drops of rain. As far as mankind is concerned, it’s a perfectly useless object and won’t make anyone money. Yet the poet who said, My heart leaps up when I behold a rainbow in the sky, only put into word the feeling of wonder and excitement we all have when we see a rainbow.”

“Every day I see a rainbow in my work; I do not need to wait to see one in the sky,” says Prof Ted Kroon, Professor in the Department of Physics at the University of the Free State (UFS), who used this phenomenon to introduce the topic of his inaugural lecture: What’s the use of a rainbow. 

“Far from being only a colourful spectacle with no practical value, rainbows are useful – and lead to useful things,” he believes. 

According to Prof Kroon, one can find examples of real rainbows and rainbow analogies used not only in everyday life, but also in physics. “Besides it being familiar devices in literature, culture, and even marketing, studies of rainbows can yield practical engineering information and may even help us to find new habitable planets,” he says.

Inspired by the many uses of a rainbow

In his lecture, he discussed the basic features of natural rainbows and how they come about. He also explored how the rainbow gives meaning to colour, and how this relates to the temperature of objects. He looked at an array of instances where the rainbow is used; from depicting the life of a star to indicating that we are sick (a thermometer) or when we need to refill a gas cylinder.
Moreover, Prof Kroon pointed out that rainbows are used in computer chips, stress identification, and to transmit internet data through underwater cables of glass fibre. He also referred to how the rainbow was harnessed as an engineering tool to measure refractive index and characterise fine droplet sprays used in industry. 

He continues, “Remarkably, the science developed to understand the natural rainbow can be redirected and applied to the optical properties of metallic nanoparticles, allowing the development of nanotechnology. Knowing how the natural rainbow works and its limitations, better systems have been developed to produce rainbows. Such rainbows have been used to discover new elements and to determine the age of the universe.”

As a member of an international community of phosphor researchers who are privileged to work with rainbows every day, he has used them to study the light-emitting properties of materials doped with bismuth. With this project – an initiative with the African Laser Centre taking place between 2016 and 2021 – he collaborated with the University of Khartoum in Sudan and trained a number of its postgraduate students. “My role included the guidance of students and the measurement and interpretation of the light-emitting properties of the materials. Our research during this time, considering more than a dozen materials, was summarised in 34 scientific publications that contributed to a greater understanding of bismuth ions as light-emitting materials,” he explains. 

Developing new materials, efficient in emitting blue light

He has been developing luminescent materials since 2006, primarily for general lighting (fluorescent tubes and LEDs) and displays (television, computer, and cellphone screens), as well as niche applications in medical and forensic science. 

As part of his current research, he is examining the effect of plasmonic metal nanoparticles on phosphor light emission. He is also exploring materials that absorb infrared light but emit visible light. “For this, I would like to consider the long-term stability of such materials and develop new materials that are more efficient in emitting particularly blue light,” he says. 

Prof Kroon holds a C2 rating from the National Research Foundation and has published more than 150 articles and book chapters, obtaining a Scopus h-index of 26.

News Archive

Wildlife researcher in ground-breaking global research on giraffes
2017-10-20

Description: Giraffe read more Tags: giraffe, conservation, Dr Francois Deacon, Last of the Long Necks, Catching Giants 

Dr Deacon from the Department of Animal, Wildlife and Grassland
Sciences at the University of the Free State (UFS),
lead a multispecialist research group to catch
and collar giraffe to collect data that will
contribute to the conservation of these animals.
Photo: Prof Nico Smith


Capturing 51 giraffes without any injuries or mortalities to collect data that will contribute to the conservation of these animals is not for everyone. Capturing a giraffe with minimum risk to the animal and the people involved, requires extraordinary skill, planning, and teamwork. “This exercise is a dangerous task, since a well-placed kick from these large and extremely powerful animals can cause serious injuries. Early in October was the first time that giraffes were captured on such a large scale,” said wildlife researcher Dr Francois Deacon.
 
Dr Deacon from the Department of Animal, Wildlife and Grassland Sciences at the University of the Free State (UFS), led a multispecialist research group of over 30 people from 10 different countries to collect information about these little-known animals.

UFS first to collar giraffe
Taking a global approach, the team responsible for this intricate process consisted of wildlife biologists, conservationists, interdisciplinary scientists and five specialist veterinarians who are experienced in catching and working with wild animals. Specialised drugs sponsored by Dr Kobus Raath from Wildlife Pharmaceuticals, tested for the first time and administered with a dart gun were used to tranquillise the giraffe, which then allowed for the GPS collars to be fitted.  These collars, sponsored by Africa Wildlife Tracking, enable the researchers to record the location of individual giraffe for up to two years, give 24/7 readings, irrespective of weather conditions. In this cost-effective manner, data can be gathered on climatic factors, giraffe communication, social behaviour, home ranges, seasonal movements, human and giraffe interaction zones, as well as migration routes and the duration of the migration process. The collars will effectively be used to locate individuals to collect faecal samples for hormonal cycles, stress hormones, nutrient deficiencies based on diet and also internal parasites. 

“This knowledge we gain is the key to all keys in saving this iconic animal from becoming extinct,” said Dr Deacon.

Six years ago, during a pilot study, Dr Deacon was the first researcher to fit giraffes with a GPS collar. Collaring is less invasive and allows researchers to collect detailed samples. Not only was extensive knowledge and experience gained during the process, but he also initiated interest from the filmmaker and conservationist, Ashley Scott Davison, executive producer of Iniosante Inc. 

Getting to tell the story

Davison, who was doing research for a film on giraffe learnt about the silent extinction of the species. In a great number of countries giraffe numbers have been declining by as much as 40% over only a few years since 2000. Today West Africa has between 400 to 600 giraffe left while four out of five giraffes were lost in East Africa since 2000. This is a considerable decline in numbers and poses a real threat to the survival of the species in the longer term. At the end of 2016, the giraffe was classified as vulnerable on the International Union for Conservation of Nature Red Data list.

According to Davison, children in school learn about the destruction caused by ivory poaching and habitat loss. But in Africa today, there are six times as many elephants as there are giraffes. 

In the process to find out more about this majestic species Davison learnt of Dr Deacon’s work. After being introduced to and spending time with Dr Deacon, Davison not only describes the UFS as the leader in the conservation of giraffes but he returned to the university, three times to help build a dedicated research team to address unanswered research questions within various disciplines.

Flowing from the affiliation with the UFS is Iniosante’s award-winning production of a documentary, “Last of the Longnecks”. The film has received several awards, including official selection at the 2017 Global Peace Film Festival, the Wildlife Conservation Film Festival and the Environmental Film Festival in the US capital. 

The film team accompanied the multispecialist research team last week to gather footage for a follow-up documentary, “Catching Giants”. This film is expected to air in middle 2018.

 Video clip of the event: https://www.dropbox.com/s/d3kv9we690bwwto/giraffe_UFS_revision-01a.mp4?dl=0

Video clip of the event: RooistoelTV

Former articles on this topic:

18 Nov 2016: http://www.ufs.ac.za/templates/news-archive-item?news=7964 
23 August 2016: http://www.ufs.ac.za/templates/news-archive-item?news=7856 
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept